

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A DISCOVERY PROCESS FOR INITIALIZING AD HOC
UNDERWATER ACOUSTIC NETWORKS

by

Ong, Chee Wei

December 2008

 Thesis Advisor: Joseph A. Rice
 Second Reader: John C. McEachen

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
A Discovery Process for Initializing Ad Hoc Underwater Acoustic Networks

6. AUTHOR(S) Ong, Chee Wei

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

Seaweb is an underwater acoustic wide-area network connecting autonomous, distributed nodes.
Prior iterations of Seaweb relied on operator intervention to initialize and manually configure the network
routes. This thesis implements a network discovery process that enables a field of spontaneously
deployed, ad hoc nodes to auto-configure for networking purposes. Network routing is initialized as nodes
in the network are discovered, with routes chosen according to comparative evaluation of a cost function
for all candidate routes. The implemented network discovery process is tested using computer simulation
and sea trial data. The resultant network routes obtained upon completion of the ad hoc network discovery
process are compared with those derived from Dijkstra’s algorithm. It is concluded that the network
discovery process always produces a shortest-path route from a master node to any other discovered
nodes in the network. Sensitivity studies on the route cost evaluation function are performed, and an
alternative network discovery scheme is discussed.

15. NUMBER OF
PAGES

115

14. SUBJECT TERMS Underwater networks, acoustic networks, ad hoc networks, network
discovery, Seaweb, acoustic communications, acomms, telesonar

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A DISCOVERY PROCESS FOR INITIALIZING AD HOC
UNDERWATER ACOUSTIC NETWORKS

Ong, Chee Wei

Lieutenant-Colonel, Republic of Singapore Navy
B. Eng. (Hons), Nanyang Technological University, 1998

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING ACOUSTICS

from the

NAVAL POSTGRADUATE SCHOOL
December 2008

Author: Ong, Chee Wei

Approved by: Joseph A. Rice
Thesis Advisor

John C. McEachen
Second Reader

Daphne Kapolka
Chair, Engineering Acoustics Academic Committee

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Seaweb is an underwater acoustic wide-area network connecting

autonomous, distributed nodes. Prior iterations of Seaweb relied on operator

intervention to initialize and manually configure the network routes. This thesis

implements a network discovery process that enables a field of spontaneously

deployed, ad hoc nodes to auto-configure for networking purposes. Network

routing is initialized as nodes in the network are discovered, with routes chosen

according to comparative evaluation of a cost function for all candidate routes.

The implemented network discovery process is tested using computer simulation

and sea trial data. The resultant network routes obtained upon completion of the

ad hoc network discovery process are compared with those derived from

Dijkstra’s algorithm. It is concluded that the network discovery process always

produces a shortest-path route from a master node to any other discovered

nodes in the network. Sensitivity studies on the route cost evaluation function

are performed, and an alternative network discovery scheme is discussed.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. PROBLEM STATEMENT... 2
B. SCOPE OF THESIS ... 2
C. STRUCTURE ... 2

II. BACKGROUND.. 5
A. RELATED WORK .. 5
B. INSIGHTS .. 8

III. THROUGH-WATER ACOUSTIC COMMUNICATIONS 9
A. SEAWEB PHYSICAL LAYER ... 9
B. HALIFAX TRIAL ENVIRONMENT... 10
C. THE COMMUNICATIONS CHANNEL ... 11

1. Transmission Loss (TL) .. 11
2. Noise Level (NL)... 12
3. Channel SNR.. 13
4. Multipath... 14

IV. SEAWEB ACOUSTIC NETWORK ... 19
A. SYSTEM COMPONENTS .. 19
B. LINK LAYER.. 20

1. Handshaking Process ... 21
2. Node-to-Node Ranging and Broadcast Ping 22

C. NETWORK LAYER.. 23
1. Neighbor Tables and Routing Tables 23
2. Cellular Addressing... 24
3. Network Initialization... 24

V. AD HOC NETWORK DISCOVERY PROCESS .. 27
A. TOPOLOGY SEARCH METHODS .. 27

1. Breadth-First Search ... 27
2. Depth-First Search... 28
3. Comparison.. 28

B. CENTRAL CONTROL.. 29
C. DESCRIPTION OF THE NETWORK DISCOVERY PROCESS......... 29

1. Master Node Discovery ... 30
2. Branch Node Discovery .. 31
3. Master Node to Branch Node Routing 36
4. Route Selection.. 37
5. Route Evaluation ... 37

a. Route Cost Evaluation Function................................ 37
b. Preferred Hop Range .. 38
c. Range Cutoff ... 39
d. Handicapped Nodes.. 39

 viii

6. Runtime Complexity .. 39
7. Frequency of Network Discovery ... 40

D. SIMULATION ... 40

VI. SEA TRIAL RESULTS AND FOLLOW-ON ANALYSIS............................... 45
A. TRIAL SETUP.. 45
B. TRIAL RESULTS ... 47
C. SIMULATION RESULTS ... 49
D. COMPARISON AND ANALYSIS... 49
E. FOLLOW-ON ANALYSIS .. 51

1. Comparison with Dijkstra’s Algorithm................................. 51
2. Cost Function Revision... 53
3 Verification of the Revised Cost Function........................... 58

VII. AN ALTERNATIVE NETWORK DISCOVERY PROCESS........................... 61
A. DESCRIPTION... 61
B. COMPARISON WITH ORIGINAL DISCOVERY PROCESS.............. 67

VIII. CONCLUSIONS.. 71
A. SUMMARY... 71
B. RECOMMENDATIONS FOR FUTURE WORK.................................. 71

1. Alternative Network Discovery Process 71
2. Node Localization .. 72
3. Route Optimization.. 72
4. Quickening the Discovery Process...................................... 72

APPENDIX A NETWORK DISCOVERY SOURCE CODE............................. 73

APPENDIX B ALTERNATIVE NETWORK DISCOVERY SOURCE CODE... 81

LIST OF REFERENCES.. 89

INITIAL DISTRIBUTION LIST ... 93

 ix

LIST OF FIGURES

Figure 1. An example of a Seaweb acoustic network comprising fixed and
mobile nodes with satellite communications back to a command
center via the radio/acoustic communication (racom) gateway buoy
[From 4]. ... 1

Figure 2. Intersections of two and three known distance measures upon
completion of discovery cycles by the first three seed nodes 1S , 2S
and 3S [After 10]. ... 6

Figure 3. Topology discovery message (TDM) propagation in an underwater
acoustic network. Each node forwards the TDM upon receipt.
Circles represent the signal propagation radius about a given node
[After 11]... 7

Figure 4. An example of 4-ary frequency shift keying using M = 4 frequencies
to represent M = 4 symbols. Each frequency if is offset by a
different amount ifΔ from the carrier frequency cf [After 12]................ 9

Figure 5. Location of June 2008 Seaweb ad hoc network discovery
experiment (St. Margaret’s Bay, Halifax, NS, Canada) and the
bathymetry associated with the trial area. .. 10

Figure 6. Attenuation coefficient α in dB/km versus transmission frequency
in kHz based on Francois and Garrison [14, 15] for salinity S = 35
ppt, acidity pH = 8, and depth D = 50 m. .. 11

Figure 7. Noise spectrum level based on empirical formulae by Coates [After
12]. ... 12

Figure 8. Effect of surface wind speed on noise spectrum level based on
empirical formulae by Coates [After 12].. 13

Figure 9. Effect of wind speed on ()TL NL− + in dB re 1μPa . For a wind
speed below 5 m/s, an acoustic communication range of up to 4 km
is possible. As wind speed increases, communication range drops
drastically. .. 14

Figure 10. Sound-speed profiles from St Margaret’s Bay (near the Seaweb
network gateway node). ... 15

Figure 11. Bellhop eigenray traces for June 2008 Halifax trial depicting a
downward refracting channel with multipath propagation. Direct-
path arrivals are in red.. 17

Figure 12. Schematics of a telesonar repeater node and the racom gateway
node. .. 20

Figure 13. Seaweb link-layer SRQ mechanism. Blue arrows are Seaweb
utility packets [After 20]. ... 21

Figure 14. The broadcast ping process [After 21].. 22
Figure 15. Seaweb node-to-node ranging process: node i transmit a ping utility

packet to node j. Node j enters a random dwell time before replying

 x

with an echo utility packet. The dwell time is embedded in the echo
reply from node j to node i. Upon receipt of the echo utility packet,
node i computes the time elapsed between ping transmission and
echo reply, and extracts the node j dwell time information. All time
measurements are computed at node i. Thus, there is no need for
clock synchronization [After 4]. ... 23

Figure 16. Two search techniques for a deterministic network – Breadth-first
search vs Depth-first search [After 24]. ... 28

Figure 17. Hypothetical node deployment for illustrating the ad hoc network
discovery process. Node A is the master node. 30

Figure 18. Master node A discovery. Node A conducts broadcast ping and
discovers new nodes B, C, and D. Node A stores neighbor
information in the master neighbor table. ... 31

Figure 19. Master node establishes route (red arrow) to its nearest neighbor
node B and directs it to perform peer discovery. 32

Figure 20. Master node establishes new route to next nearest node C and
directs it to perform peer discovery... 32

Figure 21. Master node establishes new route to node D and directs it to
perform peer discovery... 33

Figure 22. Master node establishes new route to next nearest node J and
directs it to perform peer discovery. Route to J goes through node
B. .. 33

Figure 23. Master node establishes new route to next nearest node K and
directs it to perform peer discovery. Route to node K goes through
node C instead of node B, based on the route cost evaluation
function... 34

Figure 24. Master node establishes new route to node M via node B, and
directs it to perform peer discovery... 34

Figure 25. Master node establishes new route to node P via node C, and
directs it to perform peer discovery... 35

Figure 26. Master node establishes new route to node Q via nodes C and P,
and directs it to perform peer discovery. No more new nodes are
discovered and the network discovery process terminates. 35

Figure 27. Resultant bi-directional routes from master node to all discovered
nodes in the network upon completion of the ad hoc network
discovery process... 36

Figure 28. Program flowchart for the network discovery process implemented
in C language. .. 41

Figure 29. Simulation results illustrating the effect of a handicapped master
node on the resultant network routes. Range cutoff rc = 4 km,
preferred hop range rp = 1 km, without handicap (top) and with
handicap (bottom) at master node. Shorter hops are favored at the
handicapped node. ... 42

Figure 30. Simulation results illustrating the effect of range cutoff on the
resultant network routes. Range cutoff rc = 4 km (top) and rc = 3 km

 xi

(bottom), preferred hop range rp = 1 km, without handicap at master
node. One node is not discovered when the range cutoff is 3 km. 43

Figure 31. Simulation results illustrating the effect of preferred hop range on
the resultant network routes. Range cutoff rc = 4 km, preferred hop
range rp = 1 km (top) and rp = 3 km (bottom), without handicap at
master node. A larger rp results in routes with more direct, long-
distance hops. .. 44

Figure 32. Location of 19 Seaweb nodes involved in the ad hoc network
discovery trial. Node 3 is the racom gateway buoy and the master
node. .. 46

Figure 33. Three components of a Seaweb network – Seaweb server, racom
gateway buoy, and repeater node. ... 47

Figure 34. Resultant network routes upon completion of network discovery. 48
Figure 35. Resultant network routes obtained from simulation using 24 June

2008 trial coordinates and parameters. .. 49
Figure 36. Comparison of results between simulation (top) and Dijkstra’s

algorithm (bottom). Both sets of resultant network routes are
identical. ... 52

Figure 37. Schematic of the 3-node routing problem... 54
Figure 38. Loci of positions for node C within which node C will be chosen as

the intermediate node for the route from node A to node B. rp = 1
km, and rAB = 2, 4, 6 km.. 54

Figure 39. Effect of adding a coefficient (10α =) to the first term in the cost
function... 55

Figure 40. Effect of adding a coefficient (10β =) to the second term in the
cost function. .. 56

Figure 41. Effect of reducing the exponent (1γ =) of the first term in the cost
function... 56

Figure 42. Loci of positions for node C to be chosen an intermediate node
based on the revised cost function, keeping preferred hop range
fixed at 1 km. .. 57

Figure 43. Loci of positions for node C as a function of preferred hop range
(rp), keeping distance between A and B fixed at 6 km. 58

Figure 44. Resultant network routes from the September sea trial using
revised cost function... 59

Figure 45. Simulation results using revised cost function and Sep trial
coordinates... 60

Figure 46. Simulation results using the original cost function and Sep trial
coordinates... 60

Figure 47. Master node A performs neighborhood discovery and finds nodes
B, C, and D... 62

Figure 48. Master node A uses cellular addressing (orange lightning symbol)
to direct nearest node B to perform peer discovery. Node B sends
neighbor information back to master node utilizing the cellular
address (node A). ... 63

 xii

Figure 49. Master node A uses cellular addressing to direct next nearest node
C to perform peer discovery. Master node expands its knowledge
of network... 63

Figure 50. Master node A uses cellular addressing to direct next nearest node
D to perform peer discovery. No other nodes are reachable via
cellular address (node A).. 64

Figure 51. Master node examines master neighbor table to establish lowest
cost route (red arrow) to nearest immediate neighbor node B............ 64

Figure 52. After routing to node B, master node A uses cellular address (node
B) to direct node B’s neighbors to conduct peer discovery one at a
time. Master node’s knowledge of the network is further expanded. . 65

Figure 53. Master node A establishes route to its next nearest immediate
neighbor node C. .. 65

Figure 54. After routing to node C, master node A uses cellular address (node
C) to direct node P to perform peer discovery. Node P found node
Q. No other nodes that have not performed peer discovery are
reachable via cellular address (node C). .. 66

Figure 55. Master node establishes route to next nearest neighbor node D.
Node D does not have any immediate neighbors that have not
performed peer discovery... 66

Figure 56. Simulation results from the original discovery process (left) are the
same as that from the alternative discovery process (right) in a
perfect connectivity environment. ... 68

Figure 57. Comparison between the original and the alternative discovery
schemes. .. 69

 xiii

LIST OF TABLES

Table 1. GPS coordinates of 19 nodes involved in June 2008 Seaweb ad
hoc network discovery experiment. .. 45

Table 2. Network discovery parameters used on 24 June 2008....................... 47
Table 3. Network discovery parameters used on 24 September 2008. 59

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to thank the following people for making my learning journey at

the Naval Postgraduate School an enjoyable and fruitful experience:

First and foremost, to my lovely wife, Lee Lian, thank you for the

unwavering support, love and patience. Thank you for taking such good care of

our beautiful daughters, Jolene and Jasmine.

To my thesis advisor, Professor Joe Rice, thank you for offering me an

opportunity to be part of the exciting development involving Seaweb networks. I

appreciate your guidance, patience and words of encouragement as I worked on

the thesis.

To my thesis second reader, Professor John McEachen, thank you for

taking precious time off to comment on my drafts.

To the tireless staff at SPAWAR Systems Center Pacific comprising Bill

Marn, Chris Fletcher, Bob Creber, Doug Grimmett and Lonnie Hamme, thank you

for sharing the practical knowledge associated with the deployment and

configuration of the Seaweb networks.

To the software engineers at Teledyne Benthos, namely, Mike Coryer and

Rob Pinelli, thank you for sharing ideas regarding ad hoc network discovery and

for providing suggestions on how I should develop my simulation.

To Dr Garry Heard of the Defence Research and Development Canada

(DRDC) Atlantic, thank you for making the Unet 08 trial log available to me.

To Dr Tom Drake and Ms Jody Wood-Putnam of ONR 321, thank you for

sponsoring the ad hoc network discovery implementation on Seaweb, and US

participation in the June sea trial.

To Danna Hesse of ONR 321, thank you for sponsoring US participation in

the September sea trial.

 xvi

Last but not least, to all the professors and friends with whom I have

interacted, thank you for making the NPS experience a memorable one.

 1

I. INTRODUCTION

Seaweb is an underwater acoustic wide-area network that interconnects

fixed and mobile nodes [1]. Each node is equipped with a digital signal

processor (DSP)-based telesonar (i.e., telecommunications sound navigation and

ranging) modem for through-water acoustic communications [2]. The Seaweb

network enables data-telemetry and command-and-control capabilities across a

set of deployable autonomous undersea sensors and vehicles [3].

Figure 1. An example of a Seaweb acoustic network comprising fixed and

mobile nodes with satellite communications back to a command center via
the radio/acoustic communication (racom) gateway buoy [From 4].

The ability of the submerged network to “reach back” to a command

center that may be situated at a remote locality is provided by the racom buoy

gateway node as depicted in Figure 1.

A Seaweb server resides at the manned command center. Its role is to

configure, monitor and manage the underwater network including its routing

strategies [5, 6]. The server also archives and publishes sensor data reported

 2

from the network nodes, enabling near-real-time access by clients, including

those interested in ascertaining underwater situational awareness.

A. PROBLEM STATEMENT

Prior iterations (prior to May 2008) of Seaweb networks have relied

exclusively on operator intervention to initialize and manually reconfigure the

network routes, with emphasis on routes from a master node (usually the

gateway node) to all other nodes in the network. Such a network initialization

process necessitates two assumptions – that the total number of nodes in the

network be known a priori to the operator, and that the operator has the

necessary tools to decide on a network routing strategy that is consistent with the

prevailing propagation conditions.

The need for operator intervention to manually configure the network

routes, either pre- or post-deployment, is contrary to the desire of having a field

of spontaneously deployed, autonomous nodes that are capable of auto-

configuration for networking purposes.

B. SCOPE OF THESIS

This thesis seeks to address the aforementioned issues regarding

initialization of an ad hoc Seaweb network by designing an underwater network

discovery process, implementing the process in simulation, testing the process

with experimental and synthetic data, and evaluating the resultant network routes

that come as a natural by-product of the discovery process.

C. STRUCTURE

The coverage of this thesis demands an understanding of underwater

acoustics and the ocean as a communications channel, and an appreciation of

basic communications and network flow theory.

Chapter II of this thesis covers the current state of the art in underwater ad

hoc network discovery and related research in network routing protocols.

 3

Chapter III provides an overview of the challenges posed by the physical

ocean medium on acoustic communications in the context of Seaweb physical

layer and the June 2008 Halifax trial environment, where the implemented

network discovery process was first tested at sea.

Chapter IV describes the Seaweb network architecture, specifically its link-

layer and network-layer implementation. Existing features such as ping/echo,

and broadcast ping utility packets that are instrumental in the implementation of

the proposed discovery process are discussed.

Chapter V develops considerations for the design of the ad hoc network

discovery process. Network topology discovery methods such as breadth-first

search and depth-first search are examined. The proposed network discovery

process for initializing an ad hoc Seaweb network is then presented. Parameters

associated with the cost function used for network routing, executed in tandem

with the discovery process, are also explained.

Chapter VI reports the June 2008 Halifax sea trial and the analysis of

experiment versus simulation results. Sensitivity studies involving the cost

function parameters are presented.

Chapter VII proposes a slight variation to the implemented discovery

process and discusses its pros and cons vis-à-vis the incumbent scheme.

Chapter VIII presents the conclusions of this thesis and offers

recommendations for future work.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

This chapter covers the current state of the art in underwater ad hoc

network discovery and related research in underwater network routing strategies.

A. RELATED WORK

While discovery and routing protocols for terrestrial ad hoc and wireless

sensor networks have been extensively studied [7, 8], their counterparts in

underwater acoustic networks have received far less attention. While it might be

tempting to try to adopt terrestrial wireless solutions to the undersea

environment, the unsuitability of terrestrial-derived proactive, reactive and

geographical routing protocols in the underwater medium was discussed in [9].

There is, therefore, a need to design equivalent network-layer protocols

tailored for underwater acoustic networks.

Most research papers dwelling on underwater acoustic networks advocate

some form of centralized planning of network topology and data paths in order to

optimize scarce network resources, given that underwater networks are often

smaller in scale and that network reliability over a prolonged period of

deployment is a primary consideration [9].

In [10], a centrally-controlled underwater network discovery scheme was

proposed in conjunction with a node localization algorithm. Network discovery

starts with a primary seed node 1S in a known position. Node 1S broadcasts a

discovery command packet that enables neighbors to establish distances from it,

and waits for replies from nodes within earshot. When replies are received, the

information such as node ID and distances are kept in the memory of 1S . The

most distant node in the region of 1S is then chosen as the second seed node

2S . The selection of the farthest node as the second seed node is to cover a

larger area more quickly.

 6

1S then broadcasts the information set of its discovery (containing node ID

and distance measures) together with a discovery command specifying the node

ID of 2S , to its neighboring nodes. As a result, all nodes in 1S ’s region have the

discovery information set from 1S . The node designated as the second seed

node 2S then proceeds with the same manner of discovery. It then broadcasts

the newly discovered information back to its neighbors. At this point, nodes

within the intersect region of 1S and 2S have both information sets. In order to

localize discovered nodes, a third seed node 3S is chosen from nodes that lie in

the intersection of regions 1S and 2S . The discovery cycle then repeats with 3S

as the next seed node. Upon completion, nodes that lie in the intersection of

regions 1S , 2S and 3S will have three sets of range measure and can thus be

localized. Figure 2 depicts the intersections.

1S

2S
3S

Three distance measures
Two distance measures

Distance

D
is

ta
nc

e

1S

2S
3S

Three distance measures
Two distance measures

Distance

D
is

ta
nc

e

Figure 2. Intersections of two and three known distance measures upon

completion of discovery cycles by the first three seed nodes 1S , 2S and

3S [After 10].

The above network discovery protocol offers insight into some of the

issues that this thesis is trying to address. The only drawback is that the

discovery process is optimized for node localization. Network routing is not a

consideration.

 7

In [11], another centrally-controlled network-layer discovery and routing

protocol was proposed for underwater acoustic networks. It relies on a master

node to discover the topology of the nodes that comprise the network. Topology

discovery is done by the transmission of a probe by the master node to its

nearest neighbors as shown in Figure 3. A probe is a topology discovery

message (TDM) broadcast. The transmit level of the probe is set to a

predetermined signal strength to limit the range of the probe. Upon receipt of a

TDM, each neighbor appends its node ID to it and relays it to the next “ring of

nodes”, so that the probe propagates outward from the master. In addition, each

neighbor selects a communication channel from a set of channels not already

allocated. Therefore, the probe contains node IDs of nodes it traversed, as well

as channel allocation for each of those nodes that relayed the TDM.

Master Node

TDM

Node
B

Node
C

Node
A

Node
D

Node
E

Node
F

Node
G

Node
H

TDM
TDM

TDM
TDM

TDM

TDM
TDM

Master Node

TDM

Node
B

Node
C

Node
A

Node
D

Node
E

Node
F

Node
G

Node
H

TDM
TDM

TDM
TDM

TDM

TDM
TDM

Figure 3. Topology discovery message (TDM) propagation in an underwater

acoustic network. Each node forwards the TDM upon receipt. Circles
represent the signal propagation radius about a given node [After 11].

When the probe reaches a leaf node, a topology completion notice is

initiated. The topology completion notice is returned to the master node along

the reciprocal route the topology discovery probe propagated. As the notice

 8

transits each node in the route, the node appends the neighbor information it has

collected from the discovery probes it received. As a result, when the topology

completion notice reaches the master node, it contains the information necessary

for the master to establish paths between each pair of nodes and to manage

traffic across the network.

For this protocol to achieve the desired functionality, the communication

links throughout the network were proposed to be full duplex. The full-duplex

requirement is not readily met by current acoustic communications technology.

B. INSIGHTS

A survey of articles related to network discovery and routing schemes

pertaining to an ad hoc network of underwater sensors points to the advantage of

having a central manager (a master node) to initiate and propagate the network

discovery process. The discovery process inevitably involves some form of

broadcast message so that all nodes within earshot of this message will respond.

The most significant result of an initial pair-wise discovery is the measure of

round-trip sound propagation time, which is proportional to the node-to-node

range. This discovery process ripples through the network, and the master

node’s knowledge of the network topology expands with each discovery cycle.

Upon completion of the network discovery process, the master node has some

knowledge of the network topology so that an optimized network routing can be

determined.

The insights gained herewith are useful for the design and implementation

of the discovery process for initializing an ad hoc Seaweb acoustic network of

autonomous nodes, to be discussed in Chapter V.

 9

III. THROUGH-WATER ACOUSTIC COMMUNICATIONS

This chapter provides an overview of the challenges posed by the physical

ocean medium on acoustic communications. The discussion pertains to the

Seaweb physical layer and the June 2008 trial environment where automated

network discovery was first tested at sea.

A. SEAWEB PHYSICAL LAYER

The Seaweb physical layer is based on M-ary Frequency Shift Keying

(MFSK) modulation of acoustic energy in the 9-14 kHz band [3]. MFSK uses

multiple (M) frequencies, offset from the carrier frequency, to represent M

different symbols, each containing bn bits so that 2 bnM = [12]. A sample pulse

train of a MFSK signal is shown in Figure 4.

Figure 4. An example of 4-ary frequency shift keying using M = 4 frequencies
to represent M = 4 symbols. Each frequency if is offset by a different

amount ifΔ from the carrier frequency cf [After 12].

Seaweb nodes are each equipped with a Teledyne Benthos underwater

acoustic modem with a maximum source level (SL) of 186 dB re 1 μPa at 1 m.

Varying degrees of forward error correction are employed to mitigate the high bit-

error rate experienced in the acoustic channel.

 10

B. HALIFAX TRIAL ENVIRONMENT

The June 2008 Seaweb ad hoc network discovery experiment (a part of

the Unet 2008 trial) was conducted in St Margaret’s Bay, Halifax, Nova Scotia,

Canada.

Figure 5. Location of June 2008 Seaweb ad hoc network discovery
experiment (St. Margaret’s Bay, Halifax, NS, Canada) and the bathymetry

associated with the trial area.

The water depths in which Seaweb nodes were deployed varied from 30-

70 m. Bottom type was generally sand and gravel. The surface wind speed

ranged from 2 to 8 m/s during the trial. Shipping traffic was observed to be light.

 11

C. THE COMMUNICATIONS CHANNEL

Acoustic communications bandwidth in the underwater environment is

constrained by frequency-dependent transmission loss and non-white noise

spectra. Communication is further challenged by multipath time spread, Doppler

spread and highly variable propagation delay, five orders of magnitude larger

than in radio frequency terrestrial channels. Together, these factors determine

the temporal and spatial variability of the acoustic communications channel and

make the bandwidth limited and dependent on both range and frequency [9].

1. Transmission Loss (TL)

Transmission loss arises from attenuation and geometric spreading [13].

Attenuation is primarily caused by absorption where acoustic signal energy is

converted into heat [14, 15]. Absorption increases with distance and frequency.

A plot of absorption coefficient as a function of frequency is given in Figure 6.

For a Seaweb frequency range of 9-14 kHz, a value of 1 dB/km is a reasonable

estimate for the attenuation coefficient.

Figure 6. Attenuation coefficient α in dB/km versus transmission frequency

in kHz based on Francois and Garrison [14, 15] for salinity S = 35 ppt,
acidity pH = 8, and depth D = 50 m.

 12

Transmission loss by geometric spreading refers to the spreading of

acoustic energy due to wavefront expansion as sound travels away from the

source. For the most part, it is independent of frequency and increases with

propagation distance. Geometric spreading starts with spherical spreading close

to the source, but channel boundaries may limit the propagation, absorbing some

energy and reflecting or scattering the rest.

2. Noise Level (NL)

Noise in the ocean can be categorized into man-made noise and ambient

noise. Man-made noise is mainly caused by machinery noise and shipping

activity, while ambient noise is related to seismic and biological phenomena and

movement of water including tides, currents, storms, wind, and rain.

Figure 7. Noise spectrum level based on empirical formulae by Coates [After

12].

Coates [16] provided empirical formulae to estimate noise spectrum level

(NSL) as a function of frequency. It can be observed from Figure 7 that different

noise sources dominate different frequency bands, namely, turbulence (<10 Hz),

shipping (10-200 Hz), wind (0.2-100 kHz) and thermal processes (>100 kHz).

 13

For a Seaweb underwater acoustic network, wind noise is the main

contributor to overall noise level. An increase in surface wind speed has a large

effect on the noise spectrum level as illustrated in Figure 8, which in turn, may

cause a drastic decrease in communications connectivity. Additionally, in-band

noise levels experience episodic increases caused by passing boats and

biological noise from shrimps, fish, and mammals.

Figure 8. Effect of surface wind speed on noise spectrum level based on

empirical formulae by Coates [After 12].

3. Channel SNR

The combined effects of transmission loss (TL) and noise level (NL)

represent the gross channel impairment caused by environmental factors and is

defined as the channel signal-to-noise ratio (SNR) [17]. It is both frequency and

range dependent. Figure 9 shows the effect of varying wind speeds on channel

SNR. It is a plot of ()TL NL− + for a water depth of 50 m, temperature of 14 oC ,

salinity of 35 ppt, and light shipping traffic.

 14

(a) Wind speed = 0 m/s

(b) Wind speed = 5 m/s

(c) Wind speed = 10 m/s

(d) Wind speed = 15 m/s

Figure 9. Effect of wind speed on ()TL NL− + in dB re 1μPa . For a wind
speed below 5 m/s, an acoustic communication range of up to 4 km is

possible. As wind speed increases, communication range drops
drastically.

4. Multipath

Multipath propagation results in inter-symbol interference and thus may

cause severe degradation of the received acoustic signal. Multipath response

depends on the link geometry. Horizontal channels have a much larger multipath

dB re 1 uPa dB re 1 uPa

dB re 1 uPa dB re 1 uPa

 15

spread than vertical channels. The extent of the spreading is highly dependent

on depth and transmitter-to-receiver range.

The extent of multipath propagation within a given acoustic channel can

be easily visualized with the help of ray traces and the channel impulse

response. Figure 10 shows two sound-speed profiles collected near the gateway

node in June 2008 Halifax trial environment.

0

10

20

30

40

50

60

1450 1460 1470 1480 1490 1500

Sound Speed (m/s)
De

pt
h

(m
)

SSP01
SSP03
Averaged

Figure 10. Sound-speed profiles from St Margaret’s Bay (near the Seaweb

network gateway node).

The average sound-speed profile is used to compute the eigenray traces

and channel impulse response using code from Torres [18] that employs a

Bellhop Gaussian beam tracing acoustic propagation model. Figure 11 depicts

the eigenray traces and channel impulse response for the Halifax trial

environment with a transmit frequency of 12 kHz, water depth of 57 m, source

and receiver depths of 55 m, and varying source-to-receiver ranges of 1, 2, 3 and

4 km. The plots show a downward refracting channel that allows direct-path

propagation. Multipath arrivals are the result of surface and bottom reflections.

 16

146014801500

0

10

20

30

40

50

60

Sound Speed (m/s)

D
ep

th
 (m

)

Sound Speed Profile

0 200 400 600 800 1000

0

10

20

30

40

50

Range (m)

D
ep

th
 (m

)

BELLHOP- Jun 2008 Halifax Trial (Averaged SSP)

0.68 0.7 0.72 0.74 0.76 0.78 0.8
0

1

2
x 10-3

Time (s)

A
m

pl
itu

de

Channel Impulse Response

(a) Source-to-receiver range = 1 km

146014801500

0

10

20

30

40

50

60

Sound Speed (m/s)

D
ep

th
 (m

)

Sound Speed Profile

0 500 1000 1500 2000

0

10

20

30

40

50

Range (m)

D
ep

th
 (m

)

BELLHOP- Jun 2008 Halifax Trial (Averaged SSP)

1.37 1.38 1.39 1.4 1.41 1.42 1.43 1.44 1.45
0

0.5

1
x 10-3

Time (s)

A
m

pl
itu

de

Channel Impulse Response

(b) Source-to-receiver range = 2 km

 17

146014801500

0

10

20

30

40

50

60

Sound Speed (m/s)

D
ep

th
 (m

)

Sound Speed Profile

0 1000 2000 3000

0

10

20

30

40

50

Range (m)

D
ep

th
 (m

)

BELLHOP- Jun 2008 Halifax Trial (Averaged SSP)

2.055 2.06 2.065 2.07 2.075 2.08 2.085
0

0.5

1
x 10-3

Time (s)

A
m

pl
itu

de

Channel Impulse Response

(c) Source-to-receiver range = 3 km

146014801500

0

10

20

30

40

50

60

Sound Speed (m/s)

D
ep

th
 (m

)

Sound Speed Profile

0 1000 2000 3000 4000

10

20

30

40

50

Range (m)

D
ep

th
 (m

)

BELLHOP- Jun 2008 Halifax Trial (Averaged SSP)

2.74 2.745 2.75 2.755 2.76 2.765
0

2

4
x 10-4

Time (s)

A
m

pl
itu

de

Channel Impulse Response

(d) Source-to-receiver range = 4 km

Figure 11. Bellhop eigenray traces for June 2008 Halifax trial depicting a

downward refracting channel with multipath propagation. Direct-path
arrivals are in red.

 18

The combined effects of transmission loss, noise, and multipath arrivals

make communicating in the underwater acoustic channel a challenge. In order to

ensure a reliable acoustic link between communicating nodes, there is a need for

a robust link-layer mechanism.

 19

IV. SEAWEB ACOUSTIC NETWORK

This chapter discusses the Seaweb link-layer and network-layer

mechanisms that play roles in the ad hoc network discovery process.

A. SYSTEM COMPONENTS

In the Unet 2008 sea trial, the Seaweb underwater acoustic network was

made up of three components, namely, a set of telesonar repeater nodes, a

racom gateway node, and a Seaweb server.

The telesonar repeater nodes were static nodes, each equipped with a

commercial-off-the-shelf (COTS) Teledyne Benthos telesonar modem (ATM-885)

loaded with proprietary US Navy Seaweb firmware. As discussed in Chapter III,

the telesonar modems use half-duplex MFSK signaling in the 9-14 kHz band with

variable amounts of forward error correction.

(a) Telesonar repeater node

 20

(b) Racom gateway node

Figure 12. Schematics of a telesonar repeater node and the racom gateway

node.

Seaweb gateway nodes provide an interface between the underwater

network and command centers submerged, afloat, aloft, ashore and afar. The

gateway node at Unet 2008 was a racom buoy. The racom buoy is a member of

the underwater network and is equipped with a variety of communication links

(Freewave line-of-sight packet radio, Airlink cellular modem, and Iridium satcom)

to “reach back” to a command center.

A Seaweb server resides at the command center. It provides a user

interface for the Seaweb operator to configure, monitor and manage Seaweb

operations. It is also where incoming data packets from the submerged network

can be fused as required by an application-layer protocol.

B. LINK LAYER

While the physical layer involves signaling schemes and error-correction

coding, the Seaweb link layer is concerned with ensuring reliable node-to-node

communications. This is achieved through the employment of compact 72-bit

utility packets.

 21

1. Handshaking Process

Establishment of a link between a pair of neighbor nodes is initiated by the

request-to-send (RTS) and clear-to-send (CTS) utility packets as depicted in

Figure 13. This handshaking process enables addressing, ranging, channel

estimation, power control, and adaptive modulation [19]. Other link-layer

features such as acknowledgements, range-dependent timers, retries, and

automatic repeat requests (ARQ) further improve link reliability. Figure 13 further

illustrates the selective ARQ (SRQ) link-layer mechanism for reliable transfer of

large data files between neighboring nodes even when the physical layer suffers

bit errors uncorrectable by forward error correction.

Node A Node B
1. Node A initiates a link-layer
dialogue with Node B.

3. Node A transmits a 1530-byte
Data packet using 6 256-byte
subpackets.

6. Node A retransmits the 3
subpackets specified by the SRQ
mask.

8. Node A retransmits the 1
subpacket specified by the SRQ.

2. Node B is prepared to receive as a result
of Seaweb RTS/CTS handshaking.

4. Node B receives 3 subpackets
successfully (green); 3 subpackets
contained uncorrectable bit errors (red).

5. Node B issues an SRQ utility packet,
including a 16-bit CRC mask specifying the
3 subpackets to be retransmitted.

7. Node B receives 2 of the 3 packets
successfully. Node B issues an SRQ for the
remaining subpacket.

9. Node B successfully receives and
processes Data packet.

RTS

CTS

HDR

SRQ

HDR

SRQ

HDR

Node A Node B
1. Node A initiates a link-layer
dialogue with Node B.

3. Node A transmits a 1530-byte
Data packet using 6 256-byte
subpackets.

6. Node A retransmits the 3
subpackets specified by the SRQ
mask.

8. Node A retransmits the 1
subpacket specified by the SRQ.

2. Node B is prepared to receive as a result
of Seaweb RTS/CTS handshaking.

4. Node B receives 3 subpackets
successfully (green); 3 subpackets
contained uncorrectable bit errors (red).

5. Node B issues an SRQ utility packet,
including a 16-bit CRC mask specifying the
3 subpackets to be retransmitted.

7. Node B receives 2 of the 3 packets
successfully. Node B issues an SRQ for the
remaining subpacket.

9. Node B successfully receives and
processes Data packet.

RTS

CTS

HDR

SRQ

HDR

SRQ

HDR

Figure 13. Seaweb link-layer SRQ mechanism. Blue arrows are Seaweb

utility packets [After 20].

 22

2. Node-to-Node Ranging and Broadcast Ping

Whenever a utility packet dialogue (such as RTS/CTS) takes place

between a pair of nodes, the node-to-node range is incidentally calculated and

incorporated into each node’s link-layer neighbor table. The ping and echo utility

packets are specifically designed to support neighbor discovery and node-to-

node ranging. In order to achieve node-to-node ranging, the ping packet

addresses the desired neighbor node [4].

When the address field of the ping utility packet is set to global address 0,

its function becomes a broadcast ping and it elicits echoes from all neighboring

nodes within earshot of this transmission. Upon receiving a broadcast ping, a

replying node waits a certain amount of dwell time randomly chosen from a

uniform distribution, whose parameters are specified in the broadcast ping utility

packet. Randomizing the responses from neighboring nodes reduces the

probability of echo collision at the eliciting node [21]. Figure 14 illustrates the

process whereby a specific node is directed by the Seaweb server to issue a

broadcast ping.

(a) Networked Command (b) Broadcast Ping (c) Echoes (d) Networked Telemetry(a) Networked Command (b) Broadcast Ping (c) Echoes (d) Networked Telemetry

Figure 14. The broadcast ping process [After 21].

One-way travel time, and hence the node-to-node range (product of sound

speed and one-way travel time), of any ping and echo pair of utility packets can

be calculated without the need for any clock synchronization between the

communicating nodes. Figure 15 illustrates this process.

 23

node i node j

tim
e

tim
e

ping

echo

0t

jt

t

t

jτ

0One-way Travel Time
2

j jt
t t τ

=
− −

travel time from node i
to node j

travel time from node j
to node i

random dwell time
at node j

node i node j

tim
e

tim
e

ping

echo

0t

jt

t

t

jτ

0One-way Travel Time
2

j jt
t t τ

=
− −

travel time from node i
to node j

travel time from node j
to node i

random dwell time
at node j

Figure 15. Seaweb node-to-node ranging process: node i transmit a ping utility

packet to node j. Node j enters a random dwell time before replying with
an echo utility packet. The dwell time is embedded in the echo reply from
node j to node i. Upon receipt of the echo utility packet, node i computes
the time elapsed between ping transmission and echo reply, and extracts
the node j dwell time information. All time measurements are computed at

node i. Thus, there is no need for clock synchronization [After 4].

The broadcast ping and node-to-node ranging features of the Seaweb

link-layer protocols are exploited in the ad hoc network discovery process

developed in the next chapter.

C. NETWORK LAYER

Network-layer protocols act across the network, serving to deliver

communications from a source node to a destination node via some network

route. Network-layer supervisory algorithms can be carried out at either an

autonomous master node or at the Seaweb server [1].

1. Neighbor Tables and Routing Tables

Routing and navigation through Seaweb acoustic networks are made

possible by embedded data structures distributed throughout the network. Each

node maintains a local link-layer neighbor table containing information about

adjacent nodes that are within a single hop range. In addition, each node stores

 24

a local network-layer routing table indicating the neighbor nodes that have

networked connectivity with the intended destination node [3].

In contrast to dynamic source routing [22] where the route is specified and

explicitly declared in the network-layer header of a data packet, the routing table

approach employed in Seaweb permits the network-layer header to contain only

the source and destination addresses while relying on the distributed routing

table to forward the data packet to the appropriate neighbor node en route to the

destination.

At the Seaweb server, a global neighbor table and a global routing table

are maintained to support network configurability.

2. Cellular Addressing

In keeping with the compact utility packet format of Seaweb, it was

determined [23] that additional functionality was possible with the addition of just

one more network-layer field in the utility packet, thus increasing the Seaweb

utility packet size from 8 to 9 bytes. The additional field is a "cellular address"

which enables delivery according to the established routing table to the cellular

address whereupon a final network-layer link from the cellular address to the

destination node is performed. Cellular addressing supports communications to

a mobile address in the vicinity of a cellular node and may also be invoked for

peer-to-peer communications or other network-layer addressing not already

permitted by the routing tables [23].

3. Network Initialization

Seaweb network initialization is a process of populating the distributed

local neighbor tables and local routing tables of the deployed Seaweb nodes so

as to enable network connectivity. While neighbor tables can be populated

through the use of the ping and echo utility packets, prior iterations of Seaweb

networks have relied exclusively on the Seaweb operator to manually configure

network routes from a master node (usually the gateway node) to all other nodes

 25

in the network. Such an initialization process is unsuitable for a spontaneously

deployed, ad hoc network of autonomous sensors where the number, addresses

and deployed locations of nodes may not be known a priori to the operator.

The next chapter attempts to address this network initialization issue

through the design of an ad hoc network discovery process that builds upon the

existing link-layer and network-layer mechanisms of Seaweb.

 26

THIS PAGE INTENTIONALLY LEFT BLANK

 27

V. AD HOC NETWORK DISCOVERY PROCESS

Prior iterations of Seaweb networks have relied on the Seaweb operator to

initialize and configure network routes from master node to all other nodes in the

network. This was accomplished through the manual specification of the local

routing tables distributed throughout the network.

This chapter proposes a network discovery process for initializing an ad

hoc Seaweb acoustic network following spontaneous deployment of autonomous

nodes, or where operator knowledge of the number of deployed nodes is limited

or precluded. Such a network is expected to be capable of discovering member

nodes post-deployment, and be able to auto-configure for networking purposes.

As briefly mentioned in Chapter II, this discovery process is centrally

controlled by a node designated as the master node.

Upon completion of network discovery, there should be valid routes from

the master node to all discovered nodes in the network and vice versa. Nodes

needing to communicate with each other can use the master node as a hub.

A. TOPOLOGY SEARCH METHODS

Given a distribution of fixed nodes, there are essentially two basic search

techniques for discovering directed paths (routes) from one specific root node

(master node) to each node in the network – breadth-first search, and depth-first

search [24].

1. Breadth-First Search

In breadth-first search, the algorithm starts at the master node and finds

all the neighboring nodes. Then for each of those nearest nodes, it finds all their

unexplored neighbor nodes, and so on, until there are no more unexplored nodes

in the network.

 28

2. Depth-First Search

In depth-first search, the algorithm starts at the master node and explores

along a path as far as possible before backtracking one level up to search along

the next path. Figure 16 illustrates the difference between the two search

techniques.

A

B

C

F

D

E

Network

i j
order(i) order(j)

A

B

C

F

D

E

1

2 4

6

53

Breadth-First Search

A

B

C

F

D

E

1

2 6

5

43

Depth-First Search

A

B

C

F

D

E

Network

A

B

C

F

D

E

A

B

C

F

D

E

Network

i j
order(i) order(j)

A

B

C

F

D

E

1

2 4

6

53

Breadth-First Search

i j
order(i) order(j)

i j
order(i) order(j)

A

B

C

F

D

E

1

2 4

6

53

Breadth-First Search

A

B

C

F

D

E

1

2 4

6

53

Breadth-First Search

A

B

C

F

D

E

1

2 6

5

43

Depth-First Search

A

B

C

F

D

E

1

2 6

5

43

A

B

C

F

D

E

1

2 6

5

43

Depth-First Search
Figure 16. Two search techniques for a deterministic network – Breadth-first

search vs Depth-first search [After 24].

3. Comparison

In breadth-first search, the path (route) from the master node to any node

in the network is always a shortest path [24] in that it contains the fewest number

of arcs (links) among all possible paths joining the two nodes. The same cannot

be guaranteed when using the depth-first search technique, e.g., in Figure 16 the

breadth-first search route from node A to node F contains three hops (A-B-E-F)

whereas the depth-first search route contains four (A-B-C-D-F).

The runtime complexity of both search techniques is on the order of the

sum of the number of nodes and the number of arcs in the entire network [24].

Given that the theoretical runtime complexities of the two search

algorithms are the same, the breadth-first search technique will be adopted for

the network discovery process since it is guaranteed to produce a route with the

fewest number of hops from the master node to any other specified node.

 29

B. CENTRAL CONTROL

Chapter II alluded to the use of a master node to initiate and control the

network discovery process. Such a centrally controlled scheme allows the

master node to actively monitor the progress of the discovery process as it

proceeds. The master node is also able to proactively terminate the process if

certain pre-determined conditions are met. Another advantage of central control

is that only the master node’s processing ability needs to be enhanced to handle

the envisaged complexity of the ad hoc network discovery process, as opposed

to upgrading all Seaweb nodes. The latter advantage has been important during

the development and sea testing of this process, as software changes need only

be applied at the master node. Existing Seaweb functionalities covered in

Chapter IV, such as broadcast ping and its echo response, distributed neighbor

tables and routing tables, are also exploited.

C. DESCRIPTION OF THE NETWORK DISCOVERY PROCESS

Since the master node centrally controls the network discovery process,

all other nodes (branch nodes) in the network await instruction from the master

before performing peer discovery or local routing table updates. Peer discovery

involves each node in the network issuing broadcast pings to elicit echoes from

its neighboring nodes. The branch node reports results back to the master node

upon completion of each activity. The master node aggregates the received peer

discovery data in a global neighbor table and ultimately decides how routing to

each branch node should be configured. The routing tables are then distributed

out to the branch nodes.

At the end of the discovery process, there should be valid routes from the

master node to all discovered nodes in the network and vice versa. These routes

may not be optimal for networked connectivity between any two given branch

nodes, but they can always communicate with each other by using the master

node as a hub [25].

 30

Figure 17 represents a hypothetical node deployment for illustrating the ad

hoc network discovery process.

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

Figure 17. Hypothetical node deployment for illustrating the ad hoc network
discovery process. Node A is the master node.

1. Master Node Discovery

When an arbitrarily designated master node receives a network discovery

command from the Seaweb server, it issues a specified number of broadcast

pings at a specified power level to discover its neighbors. The broadcast ping is

repeated a user-specified number of times to mitigate the possibility of echo

collisions, where the echoes from two or more neighbor nodes arrive at the

master node at the same time. The results (neighboring node addresses and

ranges) from these broadcast pings are aggregated in a global neighbor table

that the master node uses to determine routing for the network. The global

neighbor table resides only at the master node. The functionality of local

neighbor table at each node, as described in Chapter IV, remains unchanged.

At the end of its immediate neighbor discovery, the master node’s global

neighbor table is filled with range and address data for all the branch nodes it

discovered. Figure 18 depicts the nodes discovered by master node A.

 31

A

B

C

D

M

J

K

P
Q

A is Master Node

A conducts broadcast ping

A discovers new nodes B, C, D

A stores info in Master Neighbor
Table

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

A is Master Node

A conducts broadcast ping

A discovers new nodes B, C, D

A stores info in Master Neighbor
Table

Figure 18. Master node A discovery. Node A conducts broadcast ping and
discovers new nodes B, C, and D. Node A stores neighbor information in

the master neighbor table.

2. Branch Node Discovery

Upon completion of master node discovery of its neighbors, the master

node determines who are its immediate peers by applying a range cutoff, which

is specified as an argument in the initial network discovery command. The

master node then sequentially assigns bi-directional routes to these branch

nodes, and commands each of them to perform peer discovery. The master

node always operates on the nearest unprocessed branch node, establishing a

route and then performing peer discovery.

Each branch node performing peer discovery of its neighbors also uses

the same user-specified power level and performs the same specified number of

broadcast pings. All discovery pings at branch nodes are explicitly commanded

from the master node.

As each branch node discovers its neighbors, the results are sent back to

the master node. As previously mentioned, the master node aggregates and

stores the range and address information in a global neighbor table.

 32

Figures 19-27 illustrate the rest of network discovery process as it

cascades through the hypothetical network, alternating between routing and peer

discovery, and following a breadth-first search scheme.

A

B

C

D

M

J

K

P
Q

A sets-up route to B

A directs B to ping

B discovers nodes C, J, K, M

B sends info back to A to be
stored in Master Neighbor Table

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

A sets-up route to B

A directs B to ping

B discovers nodes C, J, K, M

B sends info back to A to be
stored in Master Neighbor Table

Figure 19. Master node establishes route (red arrow) to its nearest neighbor
node B and directs it to perform peer discovery.

A

B

C

D

M

J

K

P
Q

A sets-up route to C

A directs C to ping

C discovers nodes A, B, K, P

C sends info back to A to be
stored in Master Neighbor Table

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

A sets-up route to C

A directs C to ping

C discovers nodes A, B, K, P

C sends info back to A to be
stored in Master Neighbor Table

Figure 20. Master node establishes new route to next nearest node C and
directs it to perform peer discovery.

 33

A

B

C

D

M

J

K

P
Q

A sets-up route to D

A directs D to ping

C discovers node A only

C sends info back to A to be
stored in Master Neighbor Table

A

B

C

D

M

J

K

P
Q

A sets-up route to D

A directs D to ping

C discovers node A only

C sends info back to A to be
stored in Master Neighbor Table

Figure 21. Master node establishes new route to node D and directs it to
perform peer discovery.

A

B

C

D

M

J

K

P
Q

A sets-up route to J via B

A directs J to ping

J discovers nodes B, K, M

J sends info back to A to be
stored in Master Neighbor Table

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

A sets-up route to J via B

A directs J to ping

J discovers nodes B, K, M

J sends info back to A to be
stored in Master Neighbor Table

Figure 22. Master node establishes new route to next nearest node J and
directs it to perform peer discovery. Route to J goes through node B.

 34

A

B

C

D

M

J

K

P
Q

A sets-up route to K via C

A directs K to ping

K discovers nodes B, C, J

K sends info back to A to be
stored in Master Neighbor Table

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

A sets-up route to K via C

A directs K to ping

K discovers nodes B, C, J

K sends info back to A to be
stored in Master Neighbor Table

Figure 23. Master node establishes new route to next nearest node K and
directs it to perform peer discovery. Route to node K goes through node

C instead of node B, based on the route cost evaluation function.

A

B

C

D

M

J

K

P
Q

A sets-up route to M via B

A directs M to ping

M discovers nodes B, J

M sends info back to A to be
stored in Master Neighbor Table

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

A sets-up route to M via B

A directs M to ping

M discovers nodes B, J

M sends info back to A to be
stored in Master Neighbor Table

Figure 24. Master node establishes new route to node M via node B, and
directs it to perform peer discovery.

 35

A

B

C

D

M

J

K

P
Q

A sets-up route to P via C

A directs P to ping

P discovers nodes C, Q

P sends info back to A to be
stored in Master Neighbor Table

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

A sets-up route to P via C

A directs P to ping

P discovers nodes C, Q

P sends info back to A to be
stored in Master Neighbor Table

Figure 25. Master node establishes new route to node P via node C, and
directs it to perform peer discovery.

A

B

C

D

M

J

K

P
Q

A sets-up route to Q via C and P

A directs Q to ping

Q discovers node P only

Q sends info back to A to be
stored in Master Neighbor Table

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

A sets-up route to Q via C and P

A directs Q to ping

Q discovers node P only

Q sends info back to A to be
stored in Master Neighbor Table

Figure 26. Master node establishes new route to node Q via nodes C and P,
and directs it to perform peer discovery. No more new nodes are

discovered and the network discovery process terminates.

 36

A

B

C

D

M

J

K

P
Q

Network Routes at completion of
Discovery Process

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

Network Routes at completion of
Discovery Process

Figure 27. Resultant bi-directional routes from master node to all discovered

nodes in the network upon completion of the ad hoc network discovery
process.

3. Master Node to Branch Node Routing

Routing from the master node to a branch node is done in tandem with the

network discovery process. When broadcast ping results return to the master

node from a branch node, the master examines the results to determine if the

branch node can see any other nodes that the master is not yet aware of, i.e.,

newly discovered nodes. This essentially expands the network that the master

node has knowledge of. In addition, the master node needs to examine the

global neighbor table and establish routes to branch nodes, using a route cost

evaluation function, as they are discovered. When selecting a branch node to be

routed to, the master node always chooses the next nearest branch node it has

knowledge of. Route establishment and assignment to a branch node is done

before the master node commands it to perform peer discovery. Figures 19-27 in

the preceding pages depict the route establishment process being executed in

tandem with the network discovery process1.

1 The route establishment process is very similar to Ad hoc On-Demand Distance Vector

(AODV) routing protocol except that AODV does not report the route back to the originator
(master node) until the shortest path reaches the destination [29].

 37

4. Route Selection

When presented with multiple routing options to a specific branch node,

the master node uses the route cost evaluation function to choose the lowest

cost route. For example, in Figure 23, when attempting to establish a route to

node K, the master is presented with two routing options – A-B-K and A-C-K.

The final route selection (A-C-K) is the route with the lowest cost given by the

route cost evaluation function.

5. Route Evaluation

In determining the lowest cost route to a branch node in the network, a

variety of route cost criteria and associated cost functions can be used – hop

count, path length, message delivery latency, transmission security, power

consumption, network longevity, and message delivery reliability [26]. This

implementation of the ad hoc Seaweb network discovery process employs a cost

function empirically derived with two principal factors taken into consideration –

preferred hop range, and the number of hops taken to reach the specific branch

node.

a. Route Cost Evaluation Function

The empirically derived route (path) cost function is given by

=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑
2

1

th

where is the path cost from the master node to node ,
 is the number of hops in the path,
 is the range between nodes in the hop of the path, and

h
j p j

i
j p p

i

j

p

r r r
C

r r

C i
h
r j

r is the preferred hop range.

 38

The first term in the above cost function corresponds to the penalty

associated with the variance from a user-specified preferred hop range

(described in more detail below), and the second term is the penalty associated

with the distance of the hop.

For an N-node network, the corresponding total network cost is the

sum of all the N-1 path costs in the network, normalized by a factor that is a

function of the preferred hop range and the range cutoff, and is defined as

−

=

⎡ ⎤⎛ ⎞
⎢ ⎥= ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

−

∑
21

1

where is the total network cost,
 is the lowest path cost from master node to node ,

1 is the number of paths in the -node network,
 is the preferred

N
p

NETWORK i
i c

NETWORK

i

p

r
C C

r

C
C i
N N
r hop range, and

 is the range cutoff.cr

b. Preferred Hop Range

The preferred hop range (rp) is a user-specified range value that

roughly corresponds to the desired length of node-to-node links for the network.

A small preferred hop range, relative to the range cutoff, causes the routing

algorithm to choose a route containing more short-distance hops, which is a

desired routing strategy if transmission security or power consumption were used

as a route cost criterion [26]. On the other hand, a larger preferred hop range

causes the routing algorithm to choose a route containing more direct, long-

distance hops which reflects a routing strategy with hop count, path length, or

latency as a cost criterion. When reliability is the primary criterion, the preferred

hop range should represent the most desirable node-to-node range given the

prevailing propagation conditions, expected noise levels, and performance

expectations for the network.

 39

c. Range Cutoff

Range cutoff (rc) is a user-specified range beyond which any node

discovered will not be considered as an immediate neighbor. Such a node must

be reached via hops from a nearer neighbor. Range cutoff corresponds to the

largest acoustic communications range supported by the propagation conditions

of the channel. Obviously, the lower bound on range cutoff must be the shortest

node-to-node spacing in the network; otherwise, no nodes will be discovered by

the master node. A good estimate of the range cutoff can be obtained from the

channel SNR plots illustrated in Figure 9 of Chapter III. For a wind speed of less

than 5 m/s, a range cutoff of 4 km is chosen.

d. Handicapped Nodes

Certain nodes that are at an acoustic disadvantage, e.g., on the

other side of a thermocline or at a different depth than most other nodes, can be

flagged as handicapped nodes. When designated as a handicapped node, the

preferred hop range associated with immediate links to and from that node is

halved. The net result is that the route cost evaluation function favors a shorter

hop to and from the handicapped node. In most Seaweb deployments, the

master node is the racom gateway buoy with its transducer at a shallower depth

than the rest of the nodes in the network. Thus, the master node is usually

identified as a handicapped node.

6. Runtime Complexity

During the network discovery process, each node is directed to perform

peer discovery once. In addition, as each peer discovery result is returned to the

master node, the master processes the existing aggregated information in the

master neighbor table in order to determine routing to the next node. In an N-

node network, peer discovery is performed exactly N times. In a fully connected

scenario where all the N nodes are interconnected such that each node has N-1

neighbors, the master node needs to process N-1 sets of neighbor information

each time in order determine routing to the next node. Therefore, the theoretical

 40

runtime complexity of the network discovery process for an N-node network is on

the order of ((1))O N N − or approximately 2()O N .

7. Frequency of Network Discovery

Variability in underwater acoustic propagation and noise requires

consideration of channel availability when specifying the preferred hop range.

For example, if 90% channel availability is desired, the preferred hop range

should correspond to a range meeting or exceeding 90% statistical availability of

an adequate receiver signal-to-noise ratio (SNR) for the time-varying channel.

To mitigate longer-term degradation of the channel, the network discovery

process needs to be repeated at a regular interval so as to update existing

network routes in a manner that adapts to the prevailing channel conditions in the

evolving medium. Adaptation may be achieved by adjusting the preferred hop

range in a feed-back manner according to recent performance statistics.

Network discovery may also be event-triggered, such as when member nodes

suffer outages by battery depletion or when new nodes are introduced to the

network. The discovery update should fully utilize existing neighbor data along

with accumulated performance statistics for each link. The frequency of periodic

network discovery update is largely dependent on the long-term rate of change in

the acoustic channel (as indicated by variations in the sound-speed profiles and

in the ambient noise levels) where the nodes are deployed. Although this thesis

does not specifically address the frequency with which network discovery needs

to be repeated, it is practical to conduct a network discovery update on the order

of once per day.

D. SIMULATION

The ad hoc network discovery process is implemented in C language for

simulation purposes. Graphing and plotting of simulation results are done in

MATLAB. A program flowchart is given in Figure 28 and the program source

code is appended in Appendix A.

 41

Figure 28. Program flowchart for the network discovery process implemented

in C language.

Figures 29, 30 and 31, respectively, show simulation results for a network

of 50 nodes randomly distributed in a 15 km by 15 km area to illustrate the

effects of handicapped node, range cutoff, and preferred hop range on the

resultant network routes. Node 20 is the master node from which network

discovery is initiated. Simulation parameters held constant are: single broadcast

ping at each node, and a ping power level corresponding to a reliable

communications range of 4 km.

 42

0 2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

x [km]

y
[k

m
] 20

37

32

6735

28

21

63

29

25

48
53

23
52

64

31 27

50

36

43
56

39

58
65

54

33
34

68

42

62
6047

22

51

66

61

2669

38

24

45

55

57

59

49

44

30

40

41

46

Master

0 2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

x [km]

y
[k

m
] 20

37

32

6735

28

21

63

29

25

48
53

23
52

64

31 27

50

36

43
56

39

58
65

54

33
34

68

42

62
6047

22

51

66

61

2669

38

24

45

55

57

59

49

44

30

40

41

46

Master

(a) Without handicap at master node 20

0 2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

x [km]

y
[k

m
] 20

37

32

6735

28

21

63

29

25

48
53

23
52

64

31 27

50

36

43
56

39

58
65

54

33
34

68

42

62
6047

22

51

66

61

2669

38

24

45

55

57

59

49

44

30

40

41

46

Master

0 2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

x [km]

y
[k

m
] 20

37

32

6735

28

21

63

29

25

48
53

23
52

64

31 27

50

36

43
56

39

58
65

54

33
34

68

42

62
6047

22

51

66

61

2669

38

24

45

55

57

59

49

44

30

40

41

46

Master

(b) With handicap at master node 20

Figure 29. Simulation results illustrating the effect of a handicapped master

node on the resultant network routes. Range cutoff rc = 4 km, preferred
hop range rp = 1 km, without handicap (top) and with handicap (bottom) at

master node. Shorter hops are favored at the handicapped node.

 43

0 2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

x [km]

y
[k

m
] 20

37

32

6735

28

21

63

29

25

48
53

23
52

64

31 27

50

36

43
56

39

58
65

54

33
34

68

42

62
6047

22

51

66

61

2669

38

24

45

55

57

59

49

44

30

40

41

46

Master

0 2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

x [km]

y
[k

m
] 20

37

32

6735

28

21

63

29

25

48
53

23
52

64

31 27

50

36

43
56

39

58
65

54

33
34

68

42

62
6047

22

51

66

61

2669

38

24

45

55

57

59

49

44

30

40

41

46

Master

(a) Range cutoff rc = 4 km

0 2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

x [km]

y
[k

m
] 20

37

32

6735

28

21
25

63

48

23
52

29

53

36

64

58
65

31

43

39

62

56

6047

22

54

27

42
50

68

66

69
57

26

33
34 61

51

44

5524 40

38

59

49

45

41

46

Master

0 2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

x [km]

y
[k

m
] 20

37

32

6735

28

21
25

63

48

23
52

29

53

36

64

58
65

31

43

39

62

56

6047

22

54

27

42
50

68

66

69
57

26

33
34 61

51

44

5524 40

38

59

49

45

41

46

Master

(b) Range cutoff rc = 3 km

Figure 30. Simulation results illustrating the effect of range cutoff on the

resultant network routes. Range cutoff rc = 4 km (top) and rc = 3 km
(bottom), preferred hop range rp = 1 km, without handicap at master node.

One node is not discovered when the range cutoff is 3 km.

 44

0 2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

x [km]

y
[k

m
] 20

37

32

6735

28

21

63

29

25

48
53

23
52

64

31 27

50

36

43
56

39

58
65

54

33
34

68

42

62
6047

22

51

66

61

2669

38

24

45

55

57

59

49

44

30

40

41

46

Master

0 2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

x [km]

y
[k

m
] 20

37

32

6735

28

21

63

29

25

48
53

23
52

64

31 27

50

36

43
56

39

58
65

54

33
34

68

42

62
6047

22

51

66

61

2669

38

24

45

55

57

59

49

44

30

40

41

46

Master

(a) Preferred hop range rp = 1 km

0 2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

x [km]

y
[k

m
] 20

37

32

6735

28

21

63

29

25

48
53

23
52

64

31 27

50

36

43
56

39

58
65

54

33
34

68

42

62
6047

22

51

66

61

2669

38

24

45

55

57

59

49

44

30

40

41

46

Master

0 2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

x [km]

y
[k

m
] 20

37

32

6735

28

21

63

29

25

48
53

23
52

64

31 27

50

36

43
56

39

58
65

54

33
34

68

42

62
6047

22

51

66

61

2669

38

24

45

55

57

59

49

44

30

40

41

46

Master

(b) Preferred hop range rp = 3 km

Figure 31. Simulation results illustrating the effect of preferred hop range on

the resultant network routes. Range cutoff rc = 4 km, preferred hop range
rp = 1 km (top) and rp = 3 km (bottom), without handicap at master node.

A larger rp results in routes with more direct, long-distance hops.

 45

VI. SEA TRIAL RESULTS AND FOLLOW-ON ANALYSIS

In parallel with the design and simulation of the ad hoc network discovery

process at the Naval Postgraduate School, Teledyne Benthos was contracted to

implement the same network discovery scheme as a firmware upgrade for

existing Seaweb modems.

A Seaweb ad hoc network discovery experiment was conducted in June

2008 in St Margaret’s Bay, Halifax, Nova Scotia, Canada. The experiment was

conducted as part of the Unet 2008 sea trial. Refer to Chapter II for a description

of the location and trial environment.

A. TRIAL SETUP

A total of 19 nodes were utilized for the purpose of the network discovery

experiment. Table 1 lists the GPS coordinates of the deployed nodes and Figure

32 depicts the location of these nodes. Node 3 is the racom gateway buoy and it

is also the master node from which network discovery is initiated. While any

node can be designated as the master, use of the racom gateway node permits

constant monitoring of the discovery process, the cost function evaluations, and

the global routing tables. The Seaweb server resided onboard a Canadian

Forces auxiliary vessel (CFAV Quest) with multiple radio communication links to

the racom buoy.

Node ID Position (ddmm.mmm) Node ID Position (ddmm.mmm)
3 4435.609N 6359.712W 43 4436.713N 6358.396W

16 4435.400N 6359.500W 44 4437.072N 6358.393W
19 4435.279N 6400.633W 45 4437.347N 6358.483W
20 4435.870N 6359.810W 46 4435.639N 6359.253W
21 4436.350N 6359.900W 48 4434.302N 6359.727W
22 4436.850N 6359.860W 50 4435.747N 6400.316W
23 4437.340N 6359.710W 51 4436.468N 6400.629W
24 4437.810N 6359.440W 52 4437.097N 6400.689W
41 4435.790N 6358.580W 53 4437.694N 6400.904W
42 4436.270N 6358.170W

Table 1. GPS coordinates of 19 nodes involved in June 2008 Seaweb ad hoc
network discovery experiment.

 46

Figure 32. Location of 19 Seaweb nodes involved in the ad hoc network
discovery trial. Node 3 is the racom gateway buoy and the master node.

 47

Figure 33 shows photographs taken from the actual trial depicting the

three components of a Seaweb network – a Seaweb server, a racom gateway

buoy, and a telesonar repeater node. Refer to Chapter IV for a more detailed

description of these components, including deployment configurations given in

Figure 12.

Seaweb server
(onboard CFAV Quest)

Racom gateway buoy

Seaweb node
(comprising weight, acoustic release,
telesonar modem, and float)

RF, cellular,
and SATCOM link

Acoustic link

Seaweb server
(onboard CFAV Quest)

Racom gateway buoy

Seaweb node
(comprising weight, acoustic release,
telesonar modem, and float)

RF, cellular,
and SATCOM link

Acoustic link

Figure 33. Three components of a Seaweb network – Seaweb server, racom

gateway buoy, and repeater node.

B. TRIAL RESULTS

The ad hoc network discovery experiment was conducted over several

days using varying numbers of Seaweb nodes. For the purpose of analysis and

comparison in this chapter, only the 24 Jun 2008 trial results involving all 19

nodes are presented. The network discovery parameters are listed in Table 2.

Parameter Value
Master Node Node 3
No. of Broadcast Ping 1 per peer discovery
Ping Power Level 4 km (equivalent)
Range Cutoff 4 km
Preferred Hop Range 1 km
Handicapped Nodes Node 3

Table 2. Network discovery parameters used on 24 June 2008.

 48

Upon receipt of the ad hoc network discovery command and the user-

specified parameters from the Seaweb server, the master node initiated network

discovery in accordance with the process described in Chapter V. The resultant

network routes are presented in Figure 34.

Figure 34. Resultant network routes upon completion of network discovery.

 49

C. SIMULATION RESULTS

Using the node deployment positions in Table 1 and the network discovery

parameters in Table 2, the discovery process is simulated using the previously

described computer model. The node GPS coordinates are converted into a

Cartesian coordinate 2-D plane [27] and depth variations associated with the

deployed nodes are neglected. The simulation assumes an environment with

perfect communications connectivity, without any temporal or spatial variation in

the acoustic channel. The resultant network routes produced by the simulation

are shown in Figure 35.

-1 0 1 2 3 4 5 6
1

2

3

4

5

6

7

x [km]

y
[k

m
]

3

16
19

20

21

22

23

24

41

42

43

44

45

46

48

50

51

52

53

Figure 35. Resultant network routes obtained from simulation using 24 June

2008 trial coordinates and parameters.

D. COMPARISON AND ANALYSIS

A comparison between Figures 34 and 35 reveals that the simulation

closely mirrors results from the sea trial, with three exceptions at nodes 24, 22

and 51 respectively.

Node 24 was the only node not found during the network discovery sea

trial. Simulation indicates that it should have been discovered and routed via

node 23. Closer examination of the trial log reveals that node 24 did not respond

 50

to any of the ping messages from its neighboring nodes. Node 24 was

essentially unreachable (non-participative) during the trial.

Node 22 was routed via node 51 during the sea trial, whereas simulation

indicates that it should have been routed via node 21 which was nearer and

situated to its south. Examination of the trial log reveals that node 21 did not

discover node 22 during its peer discovery. In fact, node 21 did not discover any

nodes other than those situated to its south (nodes 20 and 3). Node 22 was only

discovered at a later stage during node 51’s peer discovery, hence the resultant

route via node 51. One possible explanation to node 21’s inability to discover

node 22 may lie in the bathymetry of the area where node 21 was deployed.

Bathymetry contours in Figure 34 show that there was a steep underwater cliff

within 50 m to the northwest of node 21’s deployed position. This may have

obscured acoustic communications to the west and north of node 21, thus

preventing it from discovering node 22 during peer discovery.

Node 51 was routed via node 50 upon completion of the network

discovery sea trial. Simulation indicates that node 51 should have been routed

directly via node 20. The trial log reveals that node 20 did discover node 51

during its peer discovery and routing to node 51 should have been as suggested

by simulation, i.e., via node 20. However, in trying to establish and distribute the

routing table to node 51, there was a loss of communications connectivity

between node 20 and node 51. As a result, node 51 was routed via another

node it had connectivity with, i.e., node 50.

The total network costs (NETWORKC) associated with the simulation routes

and the less optimal sea trial routes are 3.27 and 3.59, respectively. The path

cost to node 24 is not considered in the total network cost for both cases.

The above comparison shows that the network discovery algorithm is a

useful tool for accurate prediction of the resultant network routes in a perfect

 51

connectivity environment. This raises an interesting question. How optimal are

the resultant network routes obtained at the end of the ad hoc network discovery

process?

E. FOLLOW-ON ANALYSIS

1. Comparison with Dijkstra’s Algorithm

Dijkstra’s algorithm finds the shortest paths from a given source node to

all other nodes in a network by developing the paths in order of increasing path

length. The algorithm proceeds in stages. By the kth stage, the shortest paths to

the k nodes closest to (least cost away from) the source node have been

determined; these nodes are in a set T. At stage k+1, the node not in T that has

the shortest path from the source node is added to T. As each node is added to

T, its path from the source node is defined. The algorithm terminates when all

nodes have been added to T [28].

The ad hoc network discovery process detailed in Chapter V and

implemented for Seaweb bears a remarkable resemblance to Dijkstra’s shortest

path algorithm. The source node in our case is the master node and the nodes

in the network are the branch nodes that are discovered as the network

discovery process unfolds. Path lengths are the route costs calculated using the

route cost evaluation function, and the set of nodes in T is the set of branch

nodes with established routes and which have been directed by the master node

to perform peer discovery.

For a given set of nodes and the set of link costs between connected

nodes, Dijkstra’s algorithm guarantees the best (lowest cost) path routes [24]

from the master node to all discovered nodes in the network. In order to

determine the optimality of the resultant network routes produced by the ad hoc

network discovery process, there is a need to compare it against the

corresponding results from the Dijkstra’s algorithm. Figure 36 illustrates such a

comparison, using the 24 June 2008 node coordinates and the corresponding

network discovery parameters.

 52

-1 0 1 2 3 4 5 6
1

2

3

4

5

6

7

x [km]

y
[k

m
]

3

16
19

20

21

22

23

24

41

42

43

44

45

46

48

50

51

52

53

(a) Ad hoc discovery algorithm

-1 0 1 2 3 4 5 6
1

2

3

4

5

6

7

x [km]

y
[k

m
]

3

16
19

20

21

22

23

24

41

42

43

44

45

46

48

50

51

52

53

(b) Dijkstra’s algorithm

Figure 36. Comparison of results between simulation (top) and Dijkstra’s

algorithm (bottom). Both sets of resultant network routes are identical.

 53

Both the simulation and Dijkstra’s algorithm produce the same set of

resultant network routes. This finding is not surprising since in the design of the

ad hoc network discovery process, the master node always chooses the next

nearest branch node to conduct peer discovery. Routing to that selected branch

node is established prior to its execution of broadcast pings. Furthermore,

neighbor information that is received at the master after each peer discovery are

sorted based on increasing range before being aggregated into the master

neighbor table. Such an implementation mirrors Dijkstra’s concept of developing

paths in order of increasing path length.

Therefore, it is concluded that the set of resultant network routes obtained

at the end of the ad hoc network discovery process, in a perfect connectivity

environment, is a set of optimal shortest (lowest cost) paths between the master

node and all other discovered nodes in the network.

2. Cost Function Revision

Recall that the route cost evaluation function was defined in Chapter V as

=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑
2

1

th

where is the path cost from the master node to node ,
 is the number of hops in the path,
 is the range between nodes in the hop of the path, and

h
j p j

i
j p p

i

j

p

r r r
C

r r

C i
h
r j

r is the preferred hop range.

In a more generic form, it can be rewritten with weighting coefficients (α ,

β) and exponent (γ) as study parameters

1

h
j p j

i
j p p

r r r
C

r r

γ

α β
=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

 54

The cost function is used to evaluate multiple paths from the master node

to a specific branch node in order to identify the path with the lowest cost. The

following section seeks to improve the empirically derived cost function by

recognizing that complex routes are simply the sum of individual hops, as

formulated in the cost function. Hence, the route selection problem may be

reduced to a 3-node problem.

A B

C

ABr

ACr BCr

A B

C

ABr

ACr BCr

Figure 37. Schematic of the 3-node routing problem.

Given a source node A and a destination node B, an intermediate node C

may be deployed with connections to both A and B. The routing algorithm would

evaluate the route costs associated with direct path A-B (1 hop) and indirect path

A-C-B (2 hops). Assuming no handicapping of nodes and a fixed user-specified

preferred hop range (rp) of 1 km, Figure 38 depicts the loci of positions for

intermediate node C, within which a 2-hop route will be chosen over a 1-hop

route, for three distances (rAB) separating nodes A and B.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

A BA BA B

x [km]

y
[k

m
]

2

1

h
j p j

i
j p p

r r r
C

r r=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

A BA BA B

x [km]

y
[k

m
]

2

1

h
j p j

i
j p p

r r r
C

r r=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

Figure 38. Loci of positions for node C within which node C will be chosen as

the intermediate node for the route from node A to node B. rp = 1 km, and
rAB = 2, 4, 6 km.

 55

Notice that the locus of valid positions for node C to be chosen as an

intermediate node using the current cost function is a vertical ellipse. This

implies that if node C is deployed along the perpendicular bisector of line AB,

there exists a higher chance of node C being accepted as a valid intermediate

node that anywhere else between nodes A and B. Such an implication is

undesired. Figures 39-41 are a study of the effect on the locus shape in

response to adjustments to the cost function.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

A BA BA B

x [km]

y
[k

m
]

2

1
10

h
j p j

i
j p p

r r r
C

r r=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

A BA BA B

x [km]

y
[k

m
]

2

1
10

h
j p j

i
j p p

r r r
C

r r=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

Figure 39. Effect of adding a coefficient (10α =) to the first term in the cost

function.

 56

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

A BA BA B

x [km]

y
[k

m
]

2

1
10

h
j p j

i
j p p

r r r
C

r r=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

A BA BA B

x [km]

y
[k

m
]

2

1
10

h
j p j

i
j p p

r r r
C

r r=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

Figure 40. Effect of adding a coefficient (10β =) to the second term in the

cost function.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

A BA BA B

x [km]

y
[k

m
]

1

1
h

j p j
i

j p p

r r r
C

r r=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

A BA BA B

x [km]

y
[k

m
]

1

1
h

j p j
i

j p p

r r r
C

r r=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

Figure 41. Effect of reducing the exponent (1γ =) of the first term in the cost

function.

 57

It was subsequently determined that a cost function with a coefficient of 2

in the second term (2β =) results in a locus of valid positions for node C that is

circular, thus implying that all positions within a certain range from the mid-point

of A and B have the same probability of being selected as a valid intermediate

node. The corresponding loci of positions for node C is shown in Figure 42, and

the revised route cost evaluation function for the ad hoc network discovery

process is thus re-defined as

=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑
2

1

th

2

where is the path cost from the master node to node ,
 is the number of hops in the path,
 is the range between nodes in the hop of the path, and

h
j p j

i
j p p

i

j

r r r
C

r r

C i
h
r j

r is the preferred hop range.p

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

A BA BA B

x [km]

y
[k

m
]

2

1
2

h
j p j

i
j p p

r r r
C

r r=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

A BA BA B

x [km]

y
[k

m
]

2

1
2

h
j p j

i
j p p

r r r
C

r r=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

Figure 42. Loci of positions for node C to be chosen an intermediate node

based on the revised cost function, keeping preferred hop range fixed at 1
km.

 58

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

A BA BA BA B

x [km]

y
[k

m
]

2

1
2

h
j p j

i
j p p

r r r
C

r r=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑1 kmpr =

2 kmpr =

3 kmpr =

4 kmpr =

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

A BA BA BA B

x [km]

y
[k

m
]

2

1
2

h
j p j

i
j p p

r r r
C

r r=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑1 kmpr =

2 kmpr =

3 kmpr =

4 kmpr =

Figure 43. Loci of positions for node C as a function of preferred hop range

(rp), keeping distance between A and B fixed at 6 km.

Figure 43 presents the loci of positions for node C to be chosen as an

intermediate node, as a function of the preferred hop range, keeping the range

between nodes A and B constant. As the value of the preferred hop range

increases, the locus shrinks, indicating that a direct long-distance hop (skipping

node C as an intermediate node) is favored over a route comprising two short-

distance hops, unless node C is deployed near to the mid-point of node A and

node B.

3 Verification of the Revised Cost Function

The ad hoc network discovery process with the revised route cost

evaluation function was sea-tested at Horten, Norway in September 2008. This

time, the network consisted of only 9 nodes with a maximum node-to-node

spacing of less than 1000 m. The average water depth was 15 m. The network

discovery parameters used for the trial are listed in Table 3. The resultant

network routes obtained upon completion of the discovery process and that from

simulation are presented in Figures 44 and 45 respectively.

 59

Parameter Value
Master Node Node 3
No. of Broadcast Ping 2 per peer discovery
Ping Power Level 1000 m (equivalent)
Range Cutoff 1000 m
Preferred Hop Range 150 m
Handicapped nodes Node 3

Table 3. Network discovery parameters used on 24 September 2008.

Figure 44. Resultant network routes from the September sea trial using

revised cost function.

 60

1 1.1 1.2 1.3 1.4 1.5

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

x [km]

y
[k

m
]

3

10

11

13 14

20

21

30

31

2

1
2

h
j p j

i
j p p

r r r
C

r r=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

1 1.1 1.2 1.3 1.4 1.5

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

x [km]

y
[k

m
]

3

10

11

13 14

20

21

30

31

2

1
2

h
j p j

i
j p p

r r r
C

r r=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

Figure 45. Simulation results using revised cost function and Sep trial

coordinates.

The sea trial results indicate that the revised cost function is feasible and

capable of producing a set of network routes that are optimal since it matches the

simulation results, which are in turn a set of Dijkstra’s shortest (lowest cost) paths

as previously discussed. For the sake of comparison, the set of network routes

from simulation with the original cost function is shown in Figure 46. Notice that

the only difference is node 10 is not favored as an intermediate node for the

route from master node 3 to node 30 when the revised cost function is used.

1 1.1 1.2 1.3 1.4 1.5

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

x [km]

y
[k

m
]

3

10

11

13 14

20

21

30

31

2

1

h
j p j

i
j p p

r r r
C

r r=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

1 1.1 1.2 1.3 1.4 1.5

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

x [km]

y
[k

m
]

3

10

11

13 14

20

21

30

31

2

1

h
j p j

i
j p p

r r r
C

r r=

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

Figure 46. Simulation results using the original cost function and Sep trial

coordinates.

 61

VII. AN ALTERNATIVE NETWORK DISCOVERY PROCESS

The ad hoc network discovery process presented in the preceding two

chapters worked well in an acoustic environment not severely affected by spatial

and temporal variations in propagation conditions. The resultant network routes,

obtained under such a favorable connectivity environment, are a set of Dijkstra’s

shortest paths from the master node to all discovered nodes in the network.

However, when there is a temporary loss of connectivity with one or more

branch nodes, especially during route establishment or distribution of local

routing tables, the resultant route to the affected node may not be the shortest

(lowest cost) path. Such a scenario was encountered with node 51 during the

June 2008 sea trial detailed in Chapter V. In fact, some resultant routes may be

circuitous in nature.

In an attempt to address this issue and to refine the network discovery

process, this chapter presents an alternative network discovery scheme that tries

to gather as much neighborhood information as possible prior to establishing a

route to a specific branch node. This alternative discovery scheme is based

largely on the original implemented network discovery process. However, the

alternative scheme exploits the network-layer feature of cellular addressing,

introduced in Chapter IV.

A. DESCRIPTION

The functionalities of peer discovery (broadcast ping) and route

establishment in the alternative scheme are unchanged from the original network

discovery process detailed in Chapter V. The key difference is that the master

node now uses cellular addressing to communicate with the neighbors of a

routed branch node. The use of cellular addressing enables the master to direct

these neighbor nodes to perform peer discovery an additional ply into the

network, thereby increasing the master’s knowledge of the network before a

 62

routing decision to the next nearest branch node is made. This is in contrast to

the original implemented process where a node is always routed to prior to being

directed to perform a peer discovery.

Figures 47-55 illustrate the alternative discovery process, up to the point

of completion when all the immediate neighbors of node A (tier 1 nodes) are

routed.

A

B

C

D

M

J

K

P
Q

A is Master Node

A conducts broadcast ping

A discovers new nodes B, C, D

A stores info in Master Neighbor
Table

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

A is Master Node

A conducts broadcast ping

A discovers new nodes B, C, D

A stores info in Master Neighbor
Table

Figure 47. Master node A performs neighborhood discovery and finds nodes
B, C, and D.

 63

A

B

C

D

M

J

K

P
Q

A selects nearest node B to ping

A directs B to ping via Cellular
Addressing

B discovers nodes A, C, J, K, M

B sends info back to A to be
stored in Master Neighbor Table

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

A selects nearest node B to ping

A directs B to ping via Cellular
Addressing

B discovers nodes A, C, J, K, M

B sends info back to A to be
stored in Master Neighbor Table

Figure 48. Master node A uses cellular addressing (orange lightning symbol)
to direct nearest node B to perform peer discovery. Node B sends

neighbor information back to master node utilizing the cellular address
(node A).

A

B

C

D

M

J

K

P
Q

A selects next node C to ping

A directs C to ping via Cellular
Addressing

C discovers nodes A, B, K, P

C sends info back to A to be
stored in Master Neighbor Table

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

A selects next node C to ping

A directs C to ping via Cellular
Addressing

C discovers nodes A, B, K, P

C sends info back to A to be
stored in Master Neighbor Table

Figure 49. Master node A uses cellular addressing to direct next nearest node
C to perform peer discovery. Master node expands its knowledge of

network.

 64

A

B

C

D

M

J

K

P
Q

A selects next node D to ping

A directs D to ping via Cellular
Addressing

C discovers node A only

C sends info back to A to be
stored in Master Neighbor Table

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

A selects next node D to ping

A directs D to ping via Cellular
Addressing

C discovers node A only

C sends info back to A to be
stored in Master Neighbor Table

Figure 50. Master node A uses cellular addressing to direct next nearest node
D to perform peer discovery. No other nodes are reachable via cellular

address (node A).

A

B

C

D

M

J

K

P
Q

End of Tier 1 Discovery

A evaluates all possible routes to
nearest Tier 1 node B

A establishes lowest cost route to B

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

End of Tier 1 Discovery

A evaluates all possible routes to
nearest Tier 1 node B

A establishes lowest cost route to B
Figure 51. Master node examines master neighbor table to establish lowest

cost route (red arrow) to nearest immediate neighbor node B.

 65

A

B

C

D

M

J

K

P
Q

A directs B’s immediate
neighbors J, K, M to ping via
Cellular Addressing

A, C omitted as they had already
ping

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

A directs B’s immediate
neighbors J, K, M to ping via
Cellular Addressing

A, C omitted as they had already
ping

Figure 52. After routing to node B, master node A uses cellular address (node
B) to direct node B’s neighbors to conduct peer discovery one at a time.

Master node’s knowledge of the network is further expanded.

A

B

C

D

M

J

K

P
Q

A evaluates all possible routes to
next Tier 1 node C

A establishes lowest cost route to C

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

A evaluates all possible routes to
next Tier 1 node C

A establishes lowest cost route to C

Figure 53. Master node A establishes route to its next nearest immediate

neighbor node C.

 66

A

B

C

D

M

J

K

P
Q

A directs C’s immediate neighbor
P to ping via Cellular Addressing

A, B, K are omitted as they had
already ping

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

A directs C’s immediate neighbor
P to ping via Cellular Addressing

A, B, K are omitted as they had
already ping

Figure 54. After routing to node C, master node A uses cellular address (node

C) to direct node P to perform peer discovery. Node P found node Q. No
other nodes that have not performed peer discovery are reachable via

cellular address (node C).

A

B

C

D

M

J

K

P
Q

A evaluates all possible route to
next Tier 1 node D

A establishes lowest cost route to D

D has no immediate neighbor that
had not ping

A

B

C

D

M

J

K

P
Q

A

B

C

D

M

J

K

P
Q

A evaluates all possible route to
next Tier 1 node D

A establishes lowest cost route to D

D has no immediate neighbor that
had not ping

Figure 55. Master node establishes route to next nearest neighbor node D.
Node D does not have any immediate neighbors that have not performed

peer discovery.

 67

Upon completion of routing to all its immediate neighbor nodes (as

depicted in Figure 55), the master node proceeds to establish a route to the next

nearest node (in this case node J), sets it as the cellular address, and the

discovery cycle is repeated. The network discovery process terminates when no

more new nodes are discovered and all discovered nodes have been routed.

B. COMPARISON WITH ORIGINAL DISCOVERY PROCESS

Evident from the preceding illustrations, the alternative discovery process

allows the master node to acquire a more extensive knowledge of the network

before a routing decision is made. Such an expanded knowledge of the network

would be useful in the event of temporary loss of connectivity with one or more

nodes as this would present more path options to the master node as it tries to

establish a “next best” route.

In a perfect connectivity environment, both the original discovery process

and the alternative discovery scheme produce the same resultant network

routes. This is because in such an environment, all nodes within earshot of a

broadcast ping would have responded and the master node’s knowledge of the

network up to the range of the specific branch node that conducted peer

discovery is the same in both cases. While the alternative discovery process

presents the master node with more path options to the branch node, the

shortest (lowest cost) path is always one that comprises intermediate nodes that

lie between the master and that branch node. Therefore, expanded knowledge

of the network beyond the range of that branch node, made possible by the

alternative discovery process, does not serve to improve the shortest path routes

in a perfect connectivity environment. Figure 56 shows the simulation results

from both the discovery processes using June 2008 trial coordinates and the

revised cost function.

 68

-1 0 1 2 3 4 5 6
1

2

3

4

5

6

7

x [km]

y
[k

m
]

Original Discovery Process (Route before Discover)

3

16
19

20

21

22

23

24

41

42

43

44

45

46

48

50

51

52

53

-1 0 1 2 3 4 5 6
1

2

3

4

5

6

7

x [km]

y
[k

m
]

Alternative Discovery Process (Discover before Route)

3

16
19

20

21

22

23

24

41

42

43

44

45

46

48

50

51

52

53

Figure 56. Simulation results from the original discovery process (left) are the
same as that from the alternative discovery process (right) in a perfect

connectivity environment.

In reality, the underwater acoustic environment is an imperfect

connectivity channel. The benefit of having an expanded knowledge of the

network before route establishment seems invaluable. Moreover, the acquisition

of range data gives opportunity for localizing the nodes during the discovery

process rather than afterwards.

Figure 57 presents the program flowchart of the alternative discovery

process (discover before route) contrasted against the original implemented

network discovery process (route before discover).

 69

Original Scheme
(Route before Discover)

Store Master’s nbr nodes in
M_NT.Node[m]

Master directs node i to PING

End Discovery

Start Discovery

Master Node PING

Store node i's nbr nodes in
M_NT.Node[i]

TRANSFER node i's nbrs back
to Master

If all of Master’s nbrs has
PING

No

ROUTE to Master’s nearest nbr
node i

Master directs node x to PING

Store node x's nbr nodes in
M_NT.Node[x]

TRANSFER node x's nbrs back
to Master

If all of node i’s nbrs has
PING

No

No

All discovered nodes have
PING

i = i+1

x = x+1

i = i+1

ROUTE to node i's nbr node x

While Master’s nbr node i has
not PING

While node i’s nbr node x has
not PING

Alternative Scheme
(Discover before Route)

Store Master’s nbr nodes in
M_NT.Node[m]

Master directs node i via
cellular address to PING

End Discovery

Start Discovery

Master Node PING

Store node i's nbr nodes in
M_NT.Node[i]

While Master’s nbr node i has
not PING

TRANSFER node i's nbrs back
to Master

If all of Master’s nbrs has
PING

No

ROUTE to Master’s nearest nbr
node i

Master directs node x via
cellular address to PING

Store node x's nbr nodes in
M_NT.Node[x]

While node i’s nbr node x has
not PING

TRANSFER node x's nbrs back
to Master

If all of node i’s nbrs has
PING

No

ROUTE to node i+1
No

All discovered nodes have
PING and are ROUTED to

i = i+1

x = x+1

i = i+1

Figure 57. Comparison between the original and the alternative discovery

schemes.

 70

THIS PAGE INTENTIONALLY LEFT BLANK

 71

VIII. CONCLUSIONS

A. SUMMARY

This thesis developed and implemented a Seaweb network discovery

process in an effort to enable spontaneous deployment of ad hoc autonomous

nodes capable of auto-configuration for networking purposes.

The network discovery process builds upon existing Seaweb link-layer and

network-layer features. Neighborhood discovery is conducted in tandem with

network routing under the centralized control of a master node. Simulation and

at-sea trial data indicate that the implemented discovery process is feasible, and

in the absence of loss of connectivity, the resultant network routes obtained upon

completion of the discovery process are a set of optimal Dijkstra’s shortest

(lowest cost) paths from the master node to all discovered nodes in the network.

Refinements to the route cost evaluation function were identified and tested at

sea.

An alternative discovery scheme aimed at expanding the master node’s

knowledge of the network before any route establishment is also discussed. It is

believed that the alternative discovery process is more robust in an environment

affected by temporal and spatial variations in the acoustic channel.

B. RECOMMENDATIONS FOR FUTURE WORK

1. Alternative Network Discovery Process

The simulation results presented in this thesis assume an environment

with perfect acoustic communication connectivity. In order to quantify the

expected advantage afforded by the alternative network discovery scheme

(discover before route) over the original implemented discovery process (route

before discover), there is a need to simulate an environment where the

probability associated with loss of communication connectivity is modeled.

 72

Results from such a simulation can subsequently inform the actual

implementation of the alternative discovery process.

2. Node Localization

Ad hoc network initialization can sometimes entail the need for node

localization. Conceptually, the master node needs at least three different sets of

node-to-node ranges in order to triangulate a particular node, relative to a local

coordinate system. Such a localization algorithm can be incorporated to work in

tandem with the network discovery process. As peer discovery ripples through

the network and the global neighbor table is populated, the master node can

process the node-to-node ranges and localize discovered nodes.

3. Route Optimization

The network routes obtained upon completion of the network discovery

process are a set of optimal (lowest cost) bi-directional routes from the master

node to all discovered nodes in the network. However, these routes are not

optimized between any two arbitrary branch nodes trying to communicate with

each other. A peer-to-peer route optimization is required. The neighborhood

information contained in the global neighbor table provides the necessary data to

initiate a route optimization algorithm. Once peer-to-peer routes are optimized,

the master node may update the local routing tables of all branch nodes.

4. Quickening the Discovery Process

The network discovery process developed in this thesis follows an

exhaustive and sequential approach. As such, the execution of this process is

time-consuming with duration on the order of N2. There is opportunity for

speeding up the process with adaptive tuning of timers associated with the

broadcast ping processes.

 73

APPENDIX A NETWORK DISCOVERY SOURCE CODE

// Ad Hoc Network Discovery Code (ver 13 Aug 08)
// Ong Chee Wei

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define N 50 // No. of nodes
#define A 15 // Area A km by A km
#define cutoff_rng 4 // Cutoff range (km) for nodes to be considered immediate nbrs
#define ping_pwr_lvl 8 // Broadcast ping power level (1 to 8). Ranges defined in Ping function
#define P_echo_fail 0.0 // Probability (0 to 1) of echo failure in response to each ping
#define no_of_pings 1 // User defined no. of broadcast pings (1 or 2)
#define metric 1 // User defined metric (km) corresponding to preferred hop length
#define handicap_val 0.5 // User defined handicap value (0.5 or 1) at master node (RACOM buoy)
#define C1 1 // New Cost Fn weight associated with 1st term
#define C2 2 // New Cost Fn weight associated with 2nd term
#define E1 2 // New Cost Fn exponent associated with 1st term

struct posn {
 float x; // node position
 float y;
 char address; // pre-configured unique 8 bit node address
 char srl;
 };
struct posn g_posn[N]; // Global position structure

float g_rng[N][N]; // True Range lookup table b/w nodes

struct nbr {
 float range;
 char address;
 };

struct Nbr_table {
 struct posn myposn;
 char myaddress;
 char found_by;
 int rt[N]; // local routing vector
 struct nbr mynbr[N];
 };
struct Nbr_table Node[N]; // Node Neighbour Table

struct m_nbr {
 char address;
 float range1;
 float range2;
 float filtered_range;
 };

struct M_Nbr_table {
 char address;
 struct m_nbr nbr_node[N];
 };
struct M_Nbr_table M_NT_row[N]; // Master Neighbour Table

int M_Routing_table[N][N]; // Master Routing Table

int ping(int m, int ping_node, int pwr_lvl); // Ping function declaration
void transfer(int m, int fr, int to); // Tranfer function declaration
int aggregate(int m, int ping_node); // Aggregate function declaration
void determine_route(int m, int ping_node); // Determine Route function declaration
void distribute_route(int m, int ping_node); // Distribute Route function declaration

float min_route_cost[N]; // min route cost table

/* Main Program */
main(){

 FILE *out0, *out1, *out2;
 out0=fopen("log.out", "w");
 out1=fopen("g_posn.out", "w");
 out2=fopen("rng_table.out", "w");
 FILE *out5;

 74

 out5=fopen("graph.out","w");

 int node_i, node_j; // counters

//--
 /* Global position to setup N nodes in A km by A km area */
 for (node_i=0; node_i<N; node_i++){
 g_posn[node_i].x = (float)rand()/RAND_MAX*A;
 g_posn[node_i].y = (float)rand()/RAND_MAX*A;
 g_posn[node_i].address = 20 + node_i; // node address starts from 20

 Node[node_i].myaddress = g_posn[node_i].address; // each node knows its address

 fprintf(out1, "%d\t %f\t %f\t %d\n", node_i, g_posn[node_i].x, g_posn[node_i].y,
g_posn[node_i].address);
 }
 fclose(out1);

//--
// /* Global position of N nodes read-in from input0.in file */
// FILE *in1;
// in1=fopen("input0.in", "r");
//
// for (node_i=0; node_i<N; node_i++){
// fscanf(in1,"%f %f %d", &g_posn[node_i].x, &g_posn[node_i].y, &g_posn[node_i].srl);
// g_posn[node_i].address = 20 + node_i; // node address starts from 20
// Node[node_i].myaddress = g_posn[node_i].address; // each node knows its address
// fprintf(out1, "%d\t %f\t %f\t %d\n", node_i, g_posn[node_i].x, g_posn[node_i].y,
g_posn[node_i].address);
// }
// fclose(in1);
// fclose(out1);
//---

 /* Compute true range between nodes i and j (stored in look-up table)*/
 for (node_i=0; node_i<N; node_i++){
 for (node_j=0; node_j<N; node_j++){
 g_rng[node_i][node_j] = sqrt((g_posn[node_i].x-g_posn[node_j].x)*(g_posn[node_i].x-
g_posn[node_j].x)
 + (g_posn[node_i].y-g_posn[node_j].y)*(g_posn[node_i].y-
g_posn[node_j].y));
 fprintf(out2, "g_rng[%d][%d]\t %f\n", node_i, node_j, g_rng[node_i][node_j]);
 }
 }
 fclose(out2);

////////*** Network Discovery ***/////////
 int m, p, i, j; // m = Master node index, p = ping node index
 int nodes_found=0, total_nodes_found=1, new_nodes_found=0;
 int initialise=0, ping_tries;

 FILE *out3;
 out3=fopen("M_NT.out", "w");

 for (i=0; i<total_nodes_found; i++){
 if (initialise == 0){ // Master node initialisation
 m=0; // Master node index set to 0
 p = m; // p = index of Ping Node
 initialise = 1;
 }
 else p = M_NT_row[i].address - 20; // index of subsequent Ping Node

 determine_route(m, p); // Master determines route to Ping Node

 distribute_route(m, p); // Master updates route to Ping Node

 for (ping_tries=0; ping_tries<no_of_pings; ping_tries++){
 nodes_found = ping(m, p, ping_pwr_lvl); // User-defined No. of Discovery Pings
 if (nodes_found > 0)
 transfer(m, p, m); // Ping node sends nbr data to M_NT
 }

 new_nodes_found = aggregate(m, p); // Master aggregates data and expands M_NT

 total_nodes_found = total_nodes_found + new_nodes_found;
 }

 printf("\nNo. of nodes NOT discovered = %d\n\n", N-total_nodes_found);
////////*** End Network Discovery ***/////////

 75

//--
 /* Output M_NT */
 for (i=0; i<total_nodes_found; i++){
 j=0;
 fprintf(out3, "%d\t %d\t %f\t %f\t %f\n", M_NT_row[i].address,
 M_NT_row[i].nbr_node[j].address, M_NT_row[i].nbr_node[j].filtered_range,
 M_NT_row[i].nbr_node[j].range1, M_NT_row[i].nbr_node[j].range2);
 for (j=1; j<N; j++){
 if (M_NT_row[i].nbr_node[j].address != 0){
 fprintf(out3, "%d\t %d\t %f\t %f\t %f\n", M_NT_row[i].address,
 M_NT_row[i].nbr_node[j].address, M_NT_row[i].nbr_node[j].filtered_range,
 M_NT_row[i].nbr_node[j].range1, M_NT_row[i].nbr_node[j].range2);
 }
 else break;
 }
 }

 fprintf(out0,"\nNo. of nodes NOT discovered = %d\n\n\n", N-total_nodes_found);

 fclose(out3);
 fclose(out0);
 fclose(out5);

 /* Output local routing vectors */
 FILE *out6;
 out6=fopen("M_RT.out","w");
 for (i=0; i<N; i++){
 fprintf(out6,"Node %d\t", Node[i].myaddress);
 for (j=0; j<N; j++){
 fprintf(out6,"%d\t", Node[i].rt[j]);
 }
 fprintf(out6,"\n");
 }
 fclose(out6);

 /* Output min route cost */
 FILE *out7;
 out7=fopen("min_route_cost.out","w");
 for (i=0; i<N; i++){
 fprintf(out7,"%d\t %f\n", Node[i].myaddress, min_route_cost[i]);
 }
 fclose(out7);
//--

 system("PAUSE");
 }

//

/* Ping function definition */
int ping (int m, int ping_node_idx, int pwr_lvl){
 FILE *out0;
 out0=fopen("log.out", "a");
 int i, j, hit = 0;
 int exist, k = 0; // k = index to Nbr table
 float power[8] = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}; // 8 ping ranges
 float ping_rng = power[pwr_lvl-1];

 int node_idx = m, broadcast_ping = 0, route_node;

 if (node_idx == ping_node_idx) broadcast_ping = 1; // Master Node Ping
 else {
 while (node_idx != ping_node_idx){ // forward the ping command
 route_node = Node[node_idx].rt[ping_node_idx];
 node_idx = route_node - 20; // index of route node
 if (node_idx == ping_node_idx) broadcast_ping = 1;
 }
 }

 /* Broadcast Ping */
 float P_rand;

 if (broadcast_ping == 1){

 for (i=0; i<N; i++){
 if (i!=node_idx){
 P_rand = (float)rand()/RAND_MAX; // generate random echo return probability at each node
 if (g_rng[node_idx][i] <= ping_rng){

 76

 if (P_rand >= P_echo_fail){ // proceed with echo in response to broadcast ping
 for (j=0; j<N; j++){ // check if node i exists in Nbr table
 if (Node[node_idx].mynbr[j].address == g_posn[i].address){
 exist = 1;
 Node[node_idx].mynbr[j].range = g_rng[node_idx][i]; // retain the latest range
 break;
 }
 else exist = 0;
 }
 if (exist == 0){ // node i is a new node
 for (j=0; j<N; j++){
 if (Node[node_idx].mynbr[j].address == 0){
 k = j;
 break;
 }
 }
 Node[node_idx].mynbr[k].range = g_rng[node_idx][i];
 Node[node_idx].mynbr[k].address = Node[i].myaddress;

 fprintf(out0,"Pwr lvl %d\t Node %d\t discovered Node %d\t at Range = %f\n",
 pwr_lvl, Node[node_idx].myaddress, Node[node_idx].mynbr[k].address,
 Node[node_idx].mynbr[k].range);
 } // end of if
 hit = hit + 1; // no. of neighbours found
 } // end of if
 }
 }
 } // end of for
 return(hit); // return no. of neighbours discovered
 } // end of if
 }

///

/* Transfer neighbour data from Ping node to Master node to be stored in M_NT function definition */
void transfer (int m, int fr, int to){
 int i, j, k;
 struct Nbr_table temp_NT[N];
 int idx, route_node, nodes_found, exist;

 if (fr == m){
 printf("%d ", Node[fr].myaddress);
 temp_NT[to] = Node[m]; // at Master node
 }
 else {
 idx = fr;
 temp_NT[fr] = Node[fr];
 while (idx != to){
 printf("%d ", Node[fr].myaddress);
 route_node = Node[idx].rt[to]; // reverse path transfer
 idx = route_node - 20;
 temp_NT[idx] = temp_NT[fr];
 fr = idx;
 }
 if (idx == to) temp_NT[to] = temp_NT[idx]; // at Master node
 }
 printf("%d\n", Node[to].myaddress);

 for (i=0; i<N; i++){
 if (temp_NT[to].mynbr[i].address == 0){
 nodes_found = i; // determine no. of nodes found by ping node
 break;
 }
 }
 for (i=0; i<N; i++){
 if (M_NT_row[i].address == temp_NT[to].myaddress){
 k = i; // row index in M_NT corresponding to ping node
 break;
 }
 }
 for (i=0; i<nodes_found; i++){
 for (j=0; j<N; j++){ // check if node i exists in M_NT_row[k]
 if (M_NT_row[k].nbr_node[j].address == temp_NT[to].mynbr[i].address){
 exist = 1;
 M_NT_row[k].nbr_node[j].range2 = temp_NT[to].mynbr[i].range;
 break;
 }
 else exist = 0;

 77

 }
 if (exist == 0){ // node i is a new node in M_NT_row[k]
 for (j=0; j<N; j++){
 if (M_NT_row[k].nbr_node[j].address == 0) // find empty row
 break;
 }
 M_NT_row[k].nbr_node[j].address = temp_NT[to].mynbr[i].address;
 M_NT_row[k].nbr_node[j].range1 = temp_NT[to].mynbr[i].range;
 }
 }
 }

//

/* Master node aggregates data and expand M_NT function definition */
int aggregate (int m, int ping_node_idx){
 int i, j, k, exist, nodes_found, new_nodes = 0;
 float range, range1, range2;

 for (i=0; i<N; i++){
 if (M_NT_row[i].address == Node[ping_node_idx].myaddress){
 k = i; // row index k in M_NT corresponding to ping node
 break;
 }
 }
 for (i=0; i<N; i++){
 if (M_NT_row[k].nbr_node[i].address == 0){
 nodes_found = i; // determines no. of nodes found by ping node
 break;
 }
 }

 for (i=0; i<nodes_found; i++){ // Master node aggregates ranges & checks for new node
 range1 = M_NT_row[k].nbr_node[i].range1;
 range2 = M_NT_row[k].nbr_node[i].range2;
 if (range1 != 0 && range2 == 0) range = range1; // rules to filter 2 ranges
 if (range1 == 0 && range2 != 0) range = range2;
 if (range1 != 0 && range2 != 0) range = (range1 + range2) * 0.5;
 M_NT_row[k].nbr_node[i].filtered_range = range;
 }

 struct m_nbr Temp;
 for (i=0; i<nodes_found; i++){ // Bubble Sort according to range
 for (j=0; j<nodes_found-i-1; j++){
 if (M_NT_row[k].nbr_node[j].filtered_range > M_NT_row[k].nbr_node[j+1].filtered_range){
 Temp = M_NT_row[k].nbr_node[j];
 M_NT_row[k].nbr_node[j] = M_NT_row[k].nbr_node[j+1];
 M_NT_row[k].nbr_node[j+1] = Temp;
 }
 }
 }

 for (i=0; i<nodes_found; i++){
 for (j=0; j<N; j++){
 if (M_NT_row[k].nbr_node[i].address == M_NT_row[j].address){
 exist = 1;
 break;
 }
 else exist = 0;
 }
 if (exist == 0){ // M_NT_row[k].nbr_node[i] is a new node
 // apply cutoff range to determine immediate nbrs
 if (M_NT_row[k].nbr_node[i].filtered_range <= cutoff_rng){
 for (j=0; j<N; j++){
 if (M_NT_row[j].address == 0) // find empty row in M_NT
 break;
 }
 M_NT_row[j].address = M_NT_row[k].nbr_node[i].address; // expand M_NT
 new_nodes++;
 }
 }
 }
 return(new_nodes);
 }

//

/* Master node determines route to Ping Node (node_idx) function definition */
void determine_route (int m, int node_idx){

 78

 int i, j, k, exist;
 FILE *out5;
 out5=fopen("graph.out","a");

 M_Routing_table[node_idx][node_idx] = Node[node_idx].myaddress;

 if (node_idx == m){ // initialise M_NT for Master node
 M_NT_row[0].address = Node[m].myaddress;
 Node[m].found_by = Node[m].myaddress;

 fprintf(out5,"%d\t%f\t%f\t%d\t%d\n", node_idx, g_posn[node_idx].x, g_posn[node_idx].y,
 Node[node_idx].myaddress, Node[node_idx].found_by);

 return;
 }

 for (i=0; i<N; i++){
 if (M_NT_row[i].address == Node[node_idx].myaddress){
 k = i; // row index k in M_NT corresponding to node index
 break;
 }
 }

 if (M_Routing_table[m][node_idx] != 0) // check if route exist
 exist = 1;
 else exist = 0;

 int idx, route_node, low_route_node, r, s, found;
 float route_value, low_route_value=10000;

 if (exist == 0){
 for (i=0; i<k; i++){
 found = 0;
 for (j=0; j<N; j++){
 if (M_NT_row[i].nbr_node[j].address == 0) break;
 if (M_NT_row[i].nbr_node[j].address == Node[node_idx].myaddress){
 if (M_NT_row[i].nbr_node[j].filtered_range <= cutoff_rng){
 found = 1;
 idx = M_NT_row[i].address - 20;

 float metr;
 if (idx == m) metr = handicap_val*metric; // handicap master node
 else metr = metric;

 route_value = (C1*pow(((M_NT_row[i].nbr_node[j].filtered_range - metr)/metr),
E1) + C2*M_NT_row[i].nbr_node[j].filtered_range/metr);

 while (idx != m){
 route_node = M_Routing_table[idx][m];

 for (r=0; r<N; r++){
 if (M_NT_row[r].address == route_node)
 break; // row index r in M_NT corresponding to route_node
 }
 for (s=0; s<N; s++){
 if (M_NT_row[r].nbr_node[s].address == Node[idx].myaddress)
 break; // nbr index s in M_NT_row[r] corresponding to idx
 }

 idx = route_node - 20;

 if (idx == m) metr = handicap_val*metric; // handicap master node
 else metr = metric;

 route_value += (C1*pow(((M_NT_row[r].nbr_node[s].filtered_range -
metr)/metr), E1) + C2*M_NT_row[r].nbr_node[s].filtered_range/metr);

 } // end while
 }
 break;
 }
 } // end for

 if (found == 1){
 if (route_value < low_route_value){ // select lowest cost route
 low_route_value = route_value;
 low_route_node = M_NT_row[i].address;
 min_route_cost[node_idx] = low_route_value;

 79

 }
 }
 } // end for

 Node[node_idx].found_by = low_route_node;
 M_Routing_table[node_idx][low_route_node-20] = low_route_node;

 fprintf(out5,"%d\t%f\t%f\t%d\t%d\n", node_idx, g_posn[node_idx].x, g_posn[node_idx].y,
 Node[node_idx].myaddress, Node[node_idx].found_by);

 int idx1=low_route_node-20, idx2=node_idx;

 while (idx2 != m){ // update M_Routing_table
 M_Routing_table[idx2][m] = Node[idx1].myaddress;
 M_Routing_table[idx1][node_idx] = Node[idx2].myaddress;
 idx2 = idx1;
 idx1 = Node[idx1].found_by - 20;
 } // end while
 } // end if
 }

//
//////

/* Master distribute route to Ping Node (update local routing table) function definition */
void distribute_route (int m, int node_idx){
 int j, idx1=m, idx2;

 if (node_idx == m){
 for (j=0; j<N; j++)
 Node[m].rt[j] = M_Routing_table[m][j];
 return;
 }

 while (idx1 != node_idx){
 idx2 = M_Routing_table[idx1][node_idx] - 20;
 for (j=0; j<N; j++){
 Node[idx1].rt[j] = M_Routing_table[idx1][j];
 Node[idx2].rt[j] = M_Routing_table[idx2][j];
 }
 idx1 = idx2;
 }
 }

 80

THIS PAGE INTENTIONALLY LEFT BLANK

 81

APPENDIX B ALTERNATIVE NETWORK DISCOVERY
SOURCE CODE

// Alternative Network Discovery Code (ver 15 Aug 08)
// Ong Chee Wei

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define N 50 // No. of nodes
#define A 15 // Area A km by A km
#define cutoff_rng 4 // Cutoff range (km) for nodes to be considered immediate nbrs
#define ping_pwr_lvl 8 // Broadcast ping power level (1 to 8). Ranges defined in Ping function
#define P_echo_fail 0.0 // Probability (0 to 1) of echo failure in response to each ping
#define no_of_pings 1 // User defined no. of broadcast pings (1 or 2)
#define metric 1 // User defined metric (km) corresponding to preferred hop length
#define handicap_val 0.5 // User defined handicap value (0.5 or 1) at master node (RACOM buoy)
#define C1 1 // New Cost Fn weight associated with 1st term
#define C2 2 // New Cost Fn weight associated with 2nd term
#define E1 2 // New Cost Fn exponent associated with 1st term

struct posn {
 float x; // node position
 float y;
 char address; // pre-configured unique 8 bit node address
 char srl;
 };
struct posn g_posn[N]; // Global position structure

float g_rng[N][N]; // True Range lookup table b/w nodes

struct nbr {
 float range;
 char address;
 };

struct Nbr_table {
 struct posn myposn;
 char myaddress;
 char found_by;
 int rt[N]; // local routing vector
 struct nbr mynbr[N];
 };
struct Nbr_table Node[N]; // Node Neighbour Table

struct m_nbr {
 char address;
 float range1;
 float range2;
 float filtered_range;
 };

struct M_Nbr_table {
 char address;
 struct m_nbr nbr_node[N];
 };
struct M_Nbr_table M_NT_row[N]; // Master Neighbour Table

int M_Routing_table[N][N]; // Master Routing Table

int ping(int m, int ping_node, int pwr_lvl, int cell); // Ping function declaration
void transfer(int m, int fr, int to, int cell); // Tranfer function declaration
int aggregate(int m, int ping_node); // Aggregate function declaration
void determine_route(int m, int ping_node, int ping_ptr); // Determine Route function declaration
void distribute_route(int m, int ping_node); // Distribute Route function declaration

float min_route_cost[N]; // min route cost table

/* Main Program */
main(){

 FILE *out0, *out1, *out2;
 out0=fopen("log.out", "w");
 out1=fopen("g_posn.out", "w");

 82

 out2=fopen("rng_table.out", "w");
 FILE *out5;
 out5=fopen("graph.out","w");

 int node_i, node_j; // counters

//--
 /* Global position to setup N nodes in A km by A km area */
 for (node_i=0; node_i<N; node_i++){
 g_posn[node_i].x = (float)rand()/RAND_MAX*A;
 g_posn[node_i].y = (float)rand()/RAND_MAX*A;
 g_posn[node_i].address = 20 + node_i; // node address starts from 20

 Node[node_i].myaddress = g_posn[node_i].address; // each node knows its address

 fprintf(out1, "%d\t %f\t %f\t %d\n", node_i, g_posn[node_i].x, g_posn[node_i].y,
g_posn[node_i].address);
 }
 fclose(out1);

//--
// /* Global position of N nodes read-in from input.in file */
// FILE *in1;
// in1=fopen("input0.in", "r");
//
// for (node_i=0; node_i<N; node_i++){
// fscanf(in1,"%f %f %d", &g_posn[node_i].x, &g_posn[node_i].y, &g_posn[node_i].srl);
// g_posn[node_i].address = 20 + node_i; // node address starts from 20
// Node[node_i].myaddress = g_posn[node_i].address; // each node knows its address
// fprintf(out1, "%d\t %f\t %f\t %d\n", node_i, g_posn[node_i].x, g_posn[node_i].y,
g_posn[node_i].address);
// }
// fclose(in1);
// fclose(out1);
//---

 /* Compute true range between nodes i and j (stored in look-up table)*/
 for (node_i=0; node_i<N; node_i++){
 for (node_j=0; node_j<N; node_j++){
 g_rng[node_i][node_j] = sqrt((g_posn[node_i].x-g_posn[node_j].x)*(g_posn[node_i].x-
g_posn[node_j].x)
 + (g_posn[node_i].y-g_posn[node_j].y)*(g_posn[node_i].y-
g_posn[node_j].y));
 fprintf(out2, "g_rng[%d][%d]\t %f\n", node_i, node_j, g_rng[node_i][node_j]);
 }
 }
 fclose(out2);

////////*** Network Discovery ***/////////
 int m, p, r, i, j; // m = Master node index, p = ping node index, r = route
node index
 int nodes_found=0, total_nodes_found=1, new_nodes_found[N];
 int initialise=0, ping_tries, ping_ptr, cell_idx;

 FILE *out3;
 out3=fopen("M_NT.out", "w");

 for (i=0; i<total_nodes_found; i++){
 if (initialise == 0){ // Master node initialisation
 m = 0; // Master node index set to 0
 p = m; // p = index of Ping Node
 r = m; // r = index of node to be routed to
 cell_idx = m;
 ping_ptr = 0;
 initialise = 1;
 }
 else r = M_NT_row[i].address - 20; // index of subsequent Route Node

 determine_route(m, r, ping_ptr); // Master determines route to Route Node

 distribute_route(m, r); // Master updates route to Route Node

 if (p == m){
 for (ping_tries=0; ping_tries<no_of_pings; ping_tries++){
 nodes_found = ping(m, p, ping_pwr_lvl, cell_idx);
 if (nodes_found > 0)
 transfer(m, p, m, cell_idx); // Ping node sends nbr data to M_NT
 }
 new_nodes_found[ping_ptr] = aggregate(m, p); // Master aggregates data and expands M_NT

 83

 total_nodes_found = total_nodes_found + new_nodes_found[i];
 ping_ptr++;
 }

 cell_idx = M_NT_row[i].address-20;
 for (j=0; j<new_nodes_found[i]; j++){
 if (ping_ptr >= N) break;
 p = M_NT_row[ping_ptr].address - 20;
 for (ping_tries=0; ping_tries<no_of_pings; ping_tries++){
 nodes_found = ping(m, p, ping_pwr_lvl, cell_idx);
 if (nodes_found > 0)
 transfer(m, p, m, cell_idx);
 }
 new_nodes_found[ping_ptr] = aggregate(m, p);
 total_nodes_found = total_nodes_found + new_nodes_found[ping_ptr];
 ping_ptr++;
 }
 }

 printf("\nNo. of nodes NOT discovered = %d\n\n", N-total_nodes_found);
////////*** End Network Discovery ***/////////

//--
 /* Output M_NT */
 for (i=0; i<total_nodes_found; i++){
 j=0;
 fprintf(out3, "%d\t %d\t %f\t %f\t %f\n", M_NT_row[i].address,
 M_NT_row[i].nbr_node[j].address, M_NT_row[i].nbr_node[j].filtered_range,
 M_NT_row[i].nbr_node[j].range1, M_NT_row[i].nbr_node[j].range2);
 for (j=1; j<N; j++){
 if (M_NT_row[i].nbr_node[j].address != 0){
 fprintf(out3, "%d\t %d\t %f\t %f\t %f\n", M_NT_row[i].address,
 M_NT_row[i].nbr_node[j].address, M_NT_row[i].nbr_node[j].filtered_range,
 M_NT_row[i].nbr_node[j].range1, M_NT_row[i].nbr_node[j].range2);
 }
 else break;
 }
 }

 fprintf(out0,"\nNo. of nodes NOT discovered = %d\n\n\n", N-total_nodes_found);

 fclose(out3);
 fclose(out0);
 fclose(out5);

 /* Output local routing vectors */
 FILE *out6;
 out6=fopen("M_RT.out","w");
 for (i=0; i<N; i++){
 fprintf(out6,"Node %d\t", Node[i].myaddress);
 for (j=0; j<N; j++){
 fprintf(out6,"%d\t", Node[i].rt[j]);
 }
 fprintf(out6,"\n");
 }
 fclose(out6);

 /* Output min route cost */
 FILE *out7;
 out7=fopen("min_route_cost.out","w");
 for (i=0; i<N; i++){
 fprintf(out7,"%d\t %f\n", Node[i].myaddress, min_route_cost[i]);
 }
 fclose(out7);
//--

 system("PAUSE");
 }

//

/* Ping function definition */
int ping (int m, int ping_node_idx, int pwr_lvl, int cell_idx){
 FILE *out0;
 out0=fopen("log.out", "a");
 int i, j, hit = 0;
 int exist, k = 0; // k = index to Nbr table
 float power[8] = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}; // 8 ping ranges
 float ping_rng = power[pwr_lvl-1];

 84

 int node_idx = m, broadcast_ping = 0, route_node;

 if (node_idx == ping_node_idx) broadcast_ping = 1; // Master Node Ping
 else {
 while (node_idx != ping_node_idx){ // forward the ping command
 route_node = Node[node_idx].rt[cell_idx];
 node_idx = route_node - 20; // index of route node
 if (node_idx == cell_idx){
 node_idx = ping_node_idx; // Cellular addressing
 broadcast_ping = 1;
 }
 }
 }

 /* Broadcast Ping */
 float P_rand;

 if (broadcast_ping == 1){

 for (i=0; i<N; i++){
 if (i!=node_idx){
 P_rand = (float)rand()/RAND_MAX; // generate random echo return probability at each node
 if (g_rng[node_idx][i] <= ping_rng){
 if (P_rand >= P_echo_fail){ // proceed with echo in response to broadcast ping
 for (j=0; j<N; j++){ // check if node i exists in Nbr table
 if (Node[node_idx].mynbr[j].address == g_posn[i].address){
 exist = 1;
 Node[node_idx].mynbr[j].range = g_rng[node_idx][i]; // retain the latest range
 break;
 }
 else exist = 0;
 }
 if (exist == 0){ // node i is a new node
 for (j=0; j<N; j++){
 if (Node[node_idx].mynbr[j].address == 0){
 k = j;
 break;
 }
 }
 Node[node_idx].mynbr[k].range = g_rng[node_idx][i];
 Node[node_idx].mynbr[k].address = Node[i].myaddress;

 fprintf(out0,"Pwr lvl %d\t Node %d\t discovered Node %d\t at Range = %f\n",
 pwr_lvl, Node[node_idx].myaddress, Node[node_idx].mynbr[k].address,
 Node[node_idx].mynbr[k].range);
 } // end of if
 hit = hit + 1; // no. of neighbours found
 } // end of if
 }
 }
 } // end of for
 return(hit); // return no. of neighbours discovered
 } // end of if
 }

///

/* Transfer neighbour data from Ping node to Master node to be stored in M_NT function definition */
void transfer (int m, int fr, int to, int cell_idx){
 int i, j, k;
 struct Nbr_table temp_NT[N];
 int idx, route_node, nodes_found, exist;

 if (fr == m){
 printf("%d ", Node[fr].myaddress);
 temp_NT[to] = Node[m]; // at Master node
 }
 else {
 idx = fr;
 temp_NT[fr] = Node[fr];
 printf("%d ", Node[fr].myaddress);
 idx = cell_idx;
 temp_NT[idx] = temp_NT[fr];
 fr = idx;
 while (idx != to){
 printf("%d ", Node[fr].myaddress);
 route_node = Node[idx].rt[to]; // reverse path transfer
 idx = route_node - 20;

 85

 temp_NT[idx] = temp_NT[fr];
 fr = idx;
 }
 if (idx == to) temp_NT[to] = temp_NT[idx]; // at Master node
 }
 printf("%d\n", Node[to].myaddress);

 for (i=0; i<N; i++){
 if (temp_NT[to].mynbr[i].address == 0){
 nodes_found = i; // determine no. of nodes found by ping node
 break;
 }
 }
 for (i=0; i<N; i++){
 if (M_NT_row[i].address == temp_NT[to].myaddress){
 k = i; // row index in M_NT corresponding to ping node
 break;
 }
 }
 for (i=0; i<nodes_found; i++){
 for (j=0; j<N; j++){ // check if node i exists in M_NT_row[k]
 if (M_NT_row[k].nbr_node[j].address == temp_NT[to].mynbr[i].address){
 exist = 1;
 M_NT_row[k].nbr_node[j].range2 = temp_NT[to].mynbr[i].range;
 break;
 }
 else exist = 0;
 }
 if (exist == 0){ // node i is a new node in M_NT_row[k]
 for (j=0; j<N; j++){
 if (M_NT_row[k].nbr_node[j].address == 0) // find empty row
 break;
 }
 M_NT_row[k].nbr_node[j].address = temp_NT[to].mynbr[i].address;
 M_NT_row[k].nbr_node[j].range1 = temp_NT[to].mynbr[i].range;
 }
 }
 }

//

/* Master node aggregates data and expand M_NT function definition */
int aggregate (int m, int ping_node_idx){
 int i, j, k, exist, nodes_found, new_nodes = 0;
 float range, range1, range2;

 for (i=0; i<N; i++){
 if (M_NT_row[i].address == Node[ping_node_idx].myaddress){
 k = i; // row index k in M_NT corresponding to ping node
 break;
 }
 }
 for (i=0; i<N; i++){
 if (M_NT_row[k].nbr_node[i].address == 0){
 nodes_found = i; // determines no. of nodes found by ping node
 break;
 }
 }

 for (i=0; i<nodes_found; i++){ // Master node aggregates ranges & checks for new node
 range1 = M_NT_row[k].nbr_node[i].range1;
 range2 = M_NT_row[k].nbr_node[i].range2;
 if (range1 != 0 && range2 == 0) range = range1; // rules to filter 2 ranges
 if (range1 == 0 && range2 != 0) range = range2;
 if (range1 != 0 && range2 != 0) range = (range1 + range2) * 0.5;
 M_NT_row[k].nbr_node[i].filtered_range = range;
 }

 struct m_nbr Temp;
 for (i=0; i<nodes_found; i++){ // Bubble Sort according to range
 for (j=0; j<nodes_found-i-1; j++){
 if (M_NT_row[k].nbr_node[j].filtered_range > M_NT_row[k].nbr_node[j+1].filtered_range){
 Temp = M_NT_row[k].nbr_node[j];
 M_NT_row[k].nbr_node[j] = M_NT_row[k].nbr_node[j+1];
 M_NT_row[k].nbr_node[j+1] = Temp;
 }
 }
 }

 86

 for (i=0; i<nodes_found; i++){
 for (j=0; j<N; j++){
 if (M_NT_row[k].nbr_node[i].address == M_NT_row[j].address){
 exist = 1;
 break;
 }
 else exist = 0;
 }
 if (exist == 0){ // M_NT_row[k].nbr_node[i] is a new node
 // apply cutoff range to determine immediate nbrs
 if (M_NT_row[k].nbr_node[i].filtered_range <= cutoff_rng){
 for (j=0; j<N; j++){
 if (M_NT_row[j].address == 0) // find empty row in M_NT
 break;
 }
 M_NT_row[j].address = M_NT_row[k].nbr_node[i].address; // expand M_NT
 new_nodes++;

 M_Routing_table[M_NT_row[j].address-20][m]=Node[ping_node_idx].myaddress;
 }
 }
 }
 return(new_nodes);
 }

//

/* Master node determines route to Ping Node (node_idx) function definition */
void determine_route (int m, int node_idx, int ping_ptr){
 int i, j, k=ping_ptr, exist;
 FILE *out5;
 out5=fopen("graph.out","a");

 M_Routing_table[node_idx][node_idx] = Node[node_idx].myaddress;

 if (node_idx == m){ // initialise M_NT for Master node
 M_NT_row[0].address = Node[m].myaddress;
 Node[m].found_by = Node[m].myaddress;

 fprintf(out5,"%d\t%f\t%f\t%d\t%d\n", node_idx, g_posn[node_idx].x, g_posn[node_idx].y,
 Node[node_idx].myaddress, Node[node_idx].found_by);

 return;
 }

 if (M_Routing_table[m][node_idx] != 0) // check if route exist
 exist = 1;
 else exist = 0;

 int idx, route_node, low_route_node, r, s, found, found_route_node=0;
 float route_value, low_route_value=10000;

 if (exist == 0){
 for (i=0; i<k; i++){
 found = 0;
 for (j=0; j<N; j++){
 if (M_NT_row[i].nbr_node[j].address == 0) break;
 if (M_NT_row[i].nbr_node[j].address == Node[node_idx].myaddress){
 if (M_NT_row[i].nbr_node[j].filtered_range <= cutoff_rng){
 found = 1;
 idx = M_NT_row[i].address - 20;

 float metr;
 if (idx == m) metr = handicap_val*metric; // handicap master node
 else metr = metric;

 route_value = C1*pow(((M_NT_row[i].nbr_node[j].filtered_range - metr)/metr),
E1) + C2*M_NT_row[i].nbr_node[j].filtered_range/metr;

 while (idx != m){
 route_node = M_Routing_table[idx][m];
 for (r=0; r<N; r++){
 if (M_NT_row[r].address == route_node)
 break; // row index r in M_NT of route_node
 }
 for (s=0; s<N; s++){
 if (M_NT_row[r].nbr_node[s].address == Node[idx].myaddress)
 break; // nbr index s in M_NT_row[r] of idx

 87

 }

 idx = route_node - 20;

 if (idx == m) metr = handicap_val*metric; // handicap master node
 else metr = metric;

 route_value += C1*pow(((M_NT_row[r].nbr_node[s].filtered_range -
metr)/metr), E1) + C2*M_NT_row[r].nbr_node[s].filtered_range/metr;

 } // end while
 }
 break;
 }
 } // end for

 if (found == 1){
 if (route_value < low_route_value){ // select lowest cost route
 low_route_value = route_value;
 low_route_node = M_NT_row[i].address;
 min_route_cost[node_idx] = low_route_value;
 }
 }

 } // end for

 Node[node_idx].found_by = low_route_node;
 M_Routing_table[node_idx][low_route_node-20] = low_route_node;

 fprintf(out5,"%d\t%f\t%f\t%d\t%d\n", node_idx, g_posn[node_idx].x, g_posn[node_idx].y,
 Node[node_idx].myaddress, Node[node_idx].found_by);

 int idx1=low_route_node-20, idx2=node_idx;

 while (idx2 != m){ // update M_Routing_table
 M_Routing_table[idx2][m] = Node[idx1].myaddress;
 M_Routing_table[idx1][node_idx] = Node[idx2].myaddress;
 idx2 = idx1;
 idx1 = Node[idx1].found_by - 20;
 } // end while
 } // end if (exist == 0)
 }

//
//////

/* Master distribute route to Ping Node (update local routing table) function definition */
void distribute_route (int m, int node_idx){
 int j, idx1=m, idx2;

 if (node_idx == m){
 for (j=0; j<N; j++)
 Node[m].rt[j] = M_Routing_table[m][j];
 return;
 }

 while (idx1 != node_idx){
 idx2 = M_Routing_table[idx1][node_idx] - 20;
 for (j=0; j<N; j++){
 Node[idx1].rt[j] = M_Routing_table[idx1][j];
 Node[idx2].rt[j] = M_Routing_table[idx2][j];
 }
 idx1 = idx2;
 }
 }

 88

THIS PAGE INTENTIONALLY LEFT BLANK

 89

LIST OF REFERENCES

[1] J. A. Rice, R. K. Creber, C. L. Fletcher, P. A. Baxley, K. E. Rogers, and D.
C. Davison, “Seaweb Undersea Acoustic Nets,” in Biennial Review 2001,
SSC San Diego Technical Document TD 3117, pp. 234-250, August 2001.

[2] E. M. Sozer, J. G. Proakis, J. A. Rice, and M. Stojanovic, “Shallow-Water
Acoustic Networks,” Encyclopedia of Telecommunications, Wiley-
Interscience, 2003.

[3] J. A. Rice, “Seaweb Acoustic Communication and Navigation Networks,”
in Proceedings of the International Conference on Underwater Acoustic
Measurements: Technologies and Results, Heraklion, Crete, Greece,
June 2005.

[4] M. H. Hahn, “Undersea Navigation via a Distributed Acoustic
Communications Network,” M.S. thesis, Naval Postgraduate School,
Monterey, CA, USA, June 2005.

[5] C. L. Fletcher, J. A. Rice, R. K. Creber, and D. L. Codiga, “Undersea
Acoustic Network Operations Through a Database-Oriented Server/Client
Interface,” in Proc. IEEE Oceans 2001, pp. 2071-2075, November 2001.

[6] C. L. Fletcher, J. A. Rice, and R. K. Creber, “Operator Access to
Acoustically Networked Undersea Systems through the Seaweb Server,”
in Proc. IEEE Oceans 2003, pp. 1-5, September 2003.

[7] M. Abolhasan, T. Wysocki, and E. Dutkiewicz, “A Review of Routing
Protocols for Mobile Ad Hoc Networks,” Ad Hoc Networks (Elsevier), vol.
2, pp. 1-22, Jan 2004.

[8] K. Akkaya and M. Younis, “A Survey on Routing Protocols for Wireless
Sensor Networks,” Ad Hoc Networks (Elsevier), vol. 3(3), pp. 325-349,
May 2005.

[9] I. F. Akyildiz, D. Pompili, and T. Melodia, “State-of-the-Art in Protocol
Research for Underwater Acoustic Sensor Networks,” in Proc. of the 1st
ACM International Workshop on Underwater Networks , pp. 7-16, 2006.

[10] A. K. Othman, A. E. Adams, and C. C. Tsimenidis, “Node Discovery
Protocol and Localization for Distributed Underwater Acoustic Networks,”
in International Conference on Internet and Web Applications and
Services,” pp. 93-98, Feb 2006.

 90

[11] G. Xie and J. H. Gibson, “A Network Layer Protocol for UANs to Address
Propagation Delay Induced Performance Limitations,” in Proc. IEEE
Oceans 2001, pp. 2087-2094, November 2001.

[12] B. A. Kerstens, “A Study of the Seastar Underwater Acoustic Local Area
Network Concept,” M.S. thesis, Naval Postgraduate School, Monterey,
CA, USA, December 2007.

[13] R. J. Urick, Principles of Underwater Sound, McGraw-Hill, 1983.

[14] R. E. Francois and G. R. Garrison, “Sound Absorption based on Ocean
Measurements: Part I: Pure Water and Magnesium Sulfate Contributions,”
Journal of the Acoustical Society of America, vol. 72, no. 3, pp. 896-907,
1982.

[15] R. E. Francois and G. R. Garrison, “Sound Absorption based on Ocean
Measurements: Part II: Boric Acid Contribution and Equation for Total
Absorption,” Journal of the Acoustical Society of America, vol. 72, no. 6,
pp. 1879-1890, 1982.

[16] R. F. W. Coates, Underwater Acoustic Systems, New York: Halsted Press,
1989.

[17] J. T. Hansen, “Link Budget Analysis for Undersea Acoustic Signaling,”
M.S. thesis, Naval Postgraduate School, Monterey, CA, USA, June 2002.

[18] J. C. Torres, “Modeling of High-Frequency Acoustic Propagation in
Shallow Water,” M.S. thesis, Naval Postgraduate School, Monterey, CA,
USA, June 2007.

[19] J. A. Rice, V. K. McDonald, M. D. Green, and D. Porta, “ Adaptive
Modulation for Undersea Acoustic Telemetry,” Sea Technology, vol. 40,
no.5, pp. 29-36, May 1999.

[20] J. M. Kalscheuer, “A Selective Automatic Repeat Request Protocol for
Undersea Acoustic Links,” M.S. thesis, Naval Postgraduate School,
Monterey, CA, USA, June 2004.

[21] S. P. Ouimet, M. J. Hahn, and J. A. Rice, “Undersea Communication
Network as a UUV Navigation Aid,” in Proc. IEEE Oceans 2005, vol. 3, pp.
2485-2490, 2005.

[22] L. M. Ni and Y. Liu, “Communication Protocols,” in Wireless Ad Hoc
Networking: Personal-Area, Local-Area, and Sensory-Area Networks,
Auerbach Publications, 2007, pp. 25-63.

 91

[23] H. A. Kriewaldt, “Communications Performance of an Undersea Acoustic
Wide-Area Network,” M.S. thesis, Naval Postgraduate School, Monterey,
CA, USA, March 2006.

[24] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications, Prentice Hall, 1993.

[25] R. Pinelli, and M. Coryer, “Seaweb Ad Hoc Discovery Process Using
Teledyne Benthos Acoustic Modems – Functional Description,” Teledyne
Benthos, North Falmouth, MA, USA, Tech. Rep., July 2008.

[26] D. J. Grimmet, “Message Routing Criteria for Undersea Acoustic
Communications Networks,” in Proc. IEEE Oceans 2007 - Europe, pp. 1-
6, 2007.

[27] “Decimal Degree to UTM Conversion using WGS 84 as Datum,”
http://www.whimbrel.com/deg_to_utm3.html, accessed July 2008.

[28] W. Stallings, Data and Computer Communications, Prentice Hall, 2007.

[29] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand Distance
Vector (AODV) Routing,” IETF RFC 3561, 2003.

 92

THIS PAGE INTENTIONALLY LEFT BLANK

 93

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Joseph A. Rice
Naval Postgraduate School
Monterey, California

4. Professor John C. McEachen
Naval Postgraduate School
Monterey, California

5. Professor Daphne Kapolka
Naval Postgraduate School
Monterey, California

6. RADM (Ret) Ray Jones
Naval Postgraduate School
Monterey, California

7. RADM (Ret) Rick Williams
Naval Postgraduate School
Monterey, California

8. Professor Matt Carlyle
Naval Postgraduate School
Monterey, California

9. Professor Don Brutzman
Naval Postgraduate School
Monterey, California

10. CAPT (Ret) Jeffrey Kline
Naval Postgraduate School
Monterey, California

11. Wendy Walsh
Naval Postgraduate School
Monterey, California

 94

12. Bill Marn
SPAWAR Systems Center Pacific
San Diego, California

13. Chris Fletcher
SPAWAR Systems Center Pacific
San Diego, California

14. Bob Creber
SPAWAR Systems Center Pacific
San Diego, California

15. Doug Grimmett
SPAWAR Systems Center Pacific
San Diego, California

16. Lonnie Hamme
SPAWAR Systems Center Pacific
San Diego, California

17. Mike Blue
SPAWAR Systems Center Pacific
San Diego, California

18. Paul Grendron
SPAWAR Systems Center Pacific
San Diego, California

19. Mark Gillcrist
SPAWAR Systems Center Pacific
San Diego, California

20. William Macha
SPAWAR Systems Center Pacific
San Diego, California

21. Vincent McDonald
SPAWAR Systems Center Pacific
San Diego, California

22. Drew Mitchell
Naval Surface Warfare Center
Panama City, Florida

 95

23. Joel Peak
Naval Surface Warfare Center
Panama City, Florida

24. Jody Wood-Putnam
Naval Surface Warfare Center
Panama City, Florida

25. Anthony Matthews
Naval Surface Warfare Center
Panama City, Florida

26. David E. Everhart
Naval Surface Warfare Center
Panama City, Florida

27. Dale Green
Teledyne Benthos, Inc
North Falmouth, Massachusetts

28. Rob Pinelli
Teledyne Benthos, Inc
North Falmouth, Massachusetts

29. Mike Coryer
Teledyne Benthos, Inc
North Falmouth, Massachusetts

30. Ken Scussel
Teledyne Benthos, Inc
North Falmouth, Massachusetts

31. Tom Drake
ONR 321CG
Arlington, Virginia

32. Dana Hesse
ONR 321MS
Arlington, Virginia

33. Bob Headrick
ONR 321OA
Arlington, Virginia

 96

34. Dave Johnson
ONR 321
Arlington, Virginia

35. Tom Swean
ONR 321OE
Arlington, Virginia

36. Mike Wardlaw
ONR 321MS
Arlington, Virginia

37. Mike Traweek
ONR 321MS
Arlington, Virginia

38. CDR Patrick Lafontant
NAVSEA PMS NSW
Washington, District of Columbia

39. Mike Wood
Naval Special Warfare Group 3
Coronado, California

40. CDR Brad Mills
Naval Special Warfare Group 3
Coronado, California

41. Robert Mabry
US Special Operations Command
Tampa, Florida

42. Garry Heard
DRDC Atlantic
Dartmouth, Nova Scotia, Canada

43. Svein Haavik
Norwegian Defence Research Establishment (FFI)
Oslo, Norway

44. Roald Otnes
Norwegian Defence Research Establishment (FFI)
Horten, Norway

 97

45. Tor Knudsen
Norwegian Defence Research Establishment (FFI)
Horten, Norway

46. Roger Birkeland
Norwegian Defence Research Establishment (FFI)
Horten, Norway

47. Ed Franchi
Naval Research Laboratory
Washington D.C.

48. RADM (Ret) W. G. Ellis

Pentagon
Washington D.C.

49. David Hughes
NATO Undersea Research Centre
La Spezia, Italy

50. Randy Unger

OASD Homeland Defense
Washington D.C.

51. LCDR Bjorn Kerstens

Defence Materiel Organisation
The Hague, Netherlands

52. LTC Ong Chee Wei

Republic of Singapore Navy
Singapore

